Many mutations in the signal peptide and propeptide of factor IX (FIX) cause hemophilia B. A FIX variants database reports 28 unique missense mutations in these regions that lead to FIX deficiency, but the underlying mechanism is known only for the mutations on R43 that interfere with propeptide cleavage. It remains unclear how other mutations result in FIX deficiency and why patients carrying the same mutation have different bleeding tendencies. Here, we modify a cell-based reporter assay to characterize the missense mutations in the signal peptide and propeptide of FIX. The results show that the level of secreted conformation-specific reporter (SCSR), which has a functional γ-carboxyglutamate (Gla) domain of FIX, decreases significantly in most mutations. The decreased SCSR level is consistent with FIX deficiency in hemophilia B patients. Moreover, we find that the decrease in the SCSR level is caused by several distinct mechanisms, including interfering with cotranslational translocation into the endoplasmic reticulum, protein secretion, γ-carboxylation of the Gla domain, and cleavage of the signal peptide or propeptide. Importantly, our results also show that the SCSR levels of most signal peptide and propeptide mutations increase with vitamin K concentration, suggesting that the heterogeneity of bleeding tendencies may be related to vitamin K levels in the body. Thus, oral administration of vitamin K may alleviate the severity of bleeding tendencies in patients with missense mutations in the FIX signal peptide and propeptide regions.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7422117PMC
http://dx.doi.org/10.1182/bloodadvances.2020002520DOI Listing

Publication Analysis

Top Keywords

signal peptide
24
peptide propeptide
24
missense mutations
16
mutations signal
16
bleeding tendencies
12
mutations
9
gla domain
8
scsr level
8
propeptide
7
signal
6

Similar Publications

During normal cellular homeostasis, unfolded and mislocalized proteins are recognized and removed, preventing the build-up of toxic byproducts. When protein homeostasis is perturbed during ageing, neurodegeneration or cellular stress, proteins can accumulate several forms of chemical damage through reactive metabolites. Such modifications have been proposed to trigger the selective removal of chemically marked proteins; however, identifying modifications that are sufficient to induce protein degradation has remained challenging.

View Article and Find Full Text PDF

A c-type lectin with dual function of immunology and mineralization from the freshwater oyster ( Lea).

Front Immunol

January 2025

Key Laboratory of Freshwater Aquatic Genetic Resources, Ministry of Agriculture and Rural Affairs, Shanghai Ocean University, Shanghai, China.

Background: Shell and pearl formation in bivalves is a sophisticated biomineralization process that encompasses immunological and mineralization aspects, particularly during shell repair and the initial stages of pearl cultivation when a nucleus is inserted. Here, we describe a novel C-type lectin, HcLec1, isolated and characterized from the freshwater pearl mussel Lea.

Methods: Immune challenge, RNA interference (RNAi) experiments, ELISA, and antibacterial assays were employed to investigate the role of HcLec1 in innate immunity.

View Article and Find Full Text PDF

Triiodothyronine (T3) increases the expression of the amphiregulin (AREG) oncogene by activating extranuclear pathways in MCF-7 breast cancer cells.

Arch Endocrinol Metab

January 2025

Universidade Estadual Paulista Faculdade de Medicina de Botucatu BotucatuSP Brasil Universidade Estadual Paulista, Faculdade de Medicina de Botucatu, Botucatu, SP, Brasil.

Objective: Considering that the αvβ3 integrin plays an important role in tumor metastasis, this study investigated the involvement of these pathways in mediating the triiodothyronine (T3) effects on amphiregulin () expression.

Materials And Methods: We treated MCF-7 cells with T3 (10 nM) for 1 hour in the presence or absence of inhibitors for αvβ3 integrin (RGD peptide), MAPK (PD98059), PI3K (LY294002), and protein synthesis (cycloheximide [CHX]). A control group (C) received no T3 or inhibitors.

View Article and Find Full Text PDF

Background/aims: MOTS-c belongs to a group of mitochondrial peptides involved in metabolic processes in the body. This peptide has garnered increasing attention since its discovery in 2015 because of its potential to ameliorate metabolic parameters in animals with diabetes or insulin resistance. MOTS-c is involved in muscle metabolism; however, little is known about its role in fiber differentiation.

View Article and Find Full Text PDF

Acetyl xylan esterase plays a crucial role in the degradation of xylan, the major plant hemicellulose, by liberating acetic acid from the backbone polysaccharides. Acetyl xylan esterase B from Aspergillus oryzae, designated AoAxeB, was biochemically and structurally investigated. The AoAxeB-encoding gene with a native signal peptide was successfully expressed in Pichia pastoris as an active extracellular protein.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!