Three-dimensional rope-like and cloud-like nanofibrous scaffolds facilitating in-depth cell infiltration developed using a highly conductive electrospinning system.

Nanoscale

Key Laboratory of Textile Science &Technology, Ministry of Education, College of Textiles, Donghua University, Shanghai, 201620, China. and College of Textiles, Donghua University, Shanghai, 201620, China.

Published: August 2020

Three-dimensional (3D) nanofibrous scaffolds are at the forefront of tissue engineering research. However, owing to the compact geometries or unstable reserved pores, the scaffolds produced by the current techniques provide limited in-depth cell infiltration, leaving the regeneration of 3D tissues a major challenge. Herein, we have developed a novel single-step 3D electrospinning technique to create 3D rope-like or cloud-like nanofibrous scaffolds by introducing 0 to 0.9 wt% of silver nanoparticles (Ag NPs) into a spinning system and provided an insight into the mechanism. The incorporation of Ag NPs caused intense jet whipping and elevated fiber conductivity, allowing reverse charge transfer and segmented charge storage to provoke vertical collection of waved spirals. The resultant scaffolds exhibited ultrahigh specific pore volumes, facilitating in-depth cell attachment, migration, and proliferation. This work demonstrated a feasible approach to establish versatile 3D culture nanofibrous platforms for a variety of biomedical applications.

Download full-text PDF

Source
http://dx.doi.org/10.1039/d0nr03071fDOI Listing

Publication Analysis

Top Keywords

nanofibrous scaffolds
12
in-depth cell
12
rope-like cloud-like
8
cloud-like nanofibrous
8
facilitating in-depth
8
cell infiltration
8
scaffolds
5
three-dimensional rope-like
4
nanofibrous
4
scaffolds facilitating
4

Similar Publications

Bacterial cellulose-based scaffold modified with anti-CD29 antibody to selectively capture urine-derived stem cells for bladder repair.

Carbohydr Polym

March 2025

Qingdao Key Laboratory of Materials for Tissue Repair and Rehabilitation, Shandong Engineering Research Center for Tissue Rehabilitation Materials and Devices, School of Rehabilitation Sciences and Engineering, University of Health and Rehabilitation Sciences, Qingdao 266113, China. Electronic address:

Acellular cellulose-based biomaterials hold promising potential for treating bladder injuries. However, the compromised cellular state surrounding the wound impedes the complete reconstruction of the bladder. This necessitates the development of a bio-instructive cellulose-based biomaterial that actively controls cell behavior to facilitate effective bladder regeneration.

View Article and Find Full Text PDF

Leveraging the nanotopography of filamentous fungal chitin-glucan nano/microfibrous spheres (FNS) coated with collagen (type I) for scaffolded fibroblast spheroids in regenerative medicine.

Tissue Cell

January 2025

School of Chemical Engineering, Yeungnam University, 280 Daehak-Ro, Gyeongsan, Gyeongbuk 38541, Republic of Korea; Research Institute of Cell Culture, Yeungnam University, 280 Daehak-Ro, Gyeongsan, Gyeongbuk 38541, Republic of Korea. Electronic address:

Numerous naturally occurring biological structures have inspired the development of innovative biomaterials for a wide range of applications. Notably, the nanotopographical architectures found in natural materials have been leveraged in biomaterial design to enhance cell adhesion and proliferation and improve tissue regeneration for biomedical applications. In this study, we fabricated three-dimensional (3D) chitin-glucan micro/nanofibrous fungal-based spheres coated with collagen (type I) to mimic the native extracellular matrix (ECM) microenvironment.

View Article and Find Full Text PDF

The potential of nanofibrous matrices in muscular regeneration.

Nanomedicine (Lond)

January 2025

Department of Cogno-Mechatronics Engineering, College of Nanoscience & Nanotechnology, Pusan National University, Busan, Republic of Korea.

View Article and Find Full Text PDF

3D printing, as a layer-by-layer manufacturing technique, enables the customization of tissue engineering scaffolds. Surface modification of biomaterials is a beneficial approach to enhance the interaction with living cells and tissues. In this research, a polylactic acid/polyethylene glycol scaffold containing 30 % bredigite nanoparticles (PLA/PEG/B) was fabricated utilizing fused deposition modeling (FDM) 3D printing.

View Article and Find Full Text PDF

Effect of curcumin-loaded polycaprolactone scaffold on Achilles tendon repair in rats.

Vet Res Forum

November 2024

Department of Internal Medicine and Clinical Pathology, Faculty of Veterinary Medicine, Urmia University, Urmia, Iran.

Scaffolds play a crucial role in tendon healing by providing structural support, promoting cell infiltration, and guiding tissue regeneration. Polycaprolactone (PCL) has been used as a polymer in biological scaffolds for several tissue engineering studies. This study aimed to investigate the effects of curcumin-loaded PCL scaffold on Achilles tendon using a tenotomy model in rats.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!