A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Hand Resting Tremor Assessment of Healthy and Patients With Parkinson's Disease: An Exploratory Machine Learning Study. | LitMetric

The aim of this study is comparing the accuracies of machine learning algorithms to classify data concerning healthy subjects and patients with Parkinson's Disease (PD), toward different time window lengths and a number of features. Thirty-two healthy subjects and eighteen patients with PD took part on this study. The study obtained inertial recordings by using an accelerometer and a gyroscope assessing both hands of the subjects during hand resting state. We extracted time and temporal frequency domain features to feed seven machine learning algorithms: k-nearest-neighbors (NN); logistic regression; support vector classifier (SVC); linear discriminant analysis; random forest; decision tree; and gaussian Naïve Bayes. The accuracy of the classifiers was compared using different numbers of extracted features (i.e., 272, 190, 136, 82, and 27) from different time window lengths (i.e., 1, 5, 10, and 15 s). The inertial recordings were characterized by oscillatory waveforms that, especially in patients with PD, peaked in a frequency range between 3 and 8 Hz. Outcomes showed that the most important features were the mean frequency, linear prediction coefficients, power ratio, power density skew, and kurtosis. We observed that accuracies calculated in the testing phase were higher than in the training phase. Comparing the testing accuracies, we found significant interactions among time window length and the type of classifier ( < 0.05). The study found significant effects on estimated accuracies, according to their type of algorithm, time window length, and their interaction. NN presented the highest accuracy, while SVC showed the worst results. NN feeding by features extracted from 1 and 5 s were the combination with more frequently highest accuracies. Classification using few features led to similar decision of the algorithms. Moreover, performance increased significantly according to the number of features used, reaching a plateau around 136. Finally, the results of this study suggested that NN was the best algorithm to classify hand resting tremor in patients with PD.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7381229PMC
http://dx.doi.org/10.3389/fbioe.2020.00778DOI Listing

Publication Analysis

Top Keywords

time window
16
hand resting
12
machine learning
12
resting tremor
8
patients parkinson's
8
parkinson's disease
8
learning algorithms
8
healthy subjects
8
window lengths
8
number features
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!