With increasing global power demand, thermal energy storage technology could play a role ensuring a sustainable energy supply in power generation from renewable energy sources and power demand concentration. Hydrates have high potential as phase change materials (PCMs) for the use as a thermal energy storage medium. To develop thermal energy storage technology using a hydrate-based material, further investigation of thermophysical properties and the selection of a suitable hydrate are required. Tetrabutylphosphonium oxalate (TBPOx) ionic semiclathrate hydrate contains oxalic acid in salt form, as a guest compound, which is classified as carboxylic acid group with low environmental impact. In the present study, the phase equilibrium temperature and the dissociation heat of TBPOx hydrate were measured. The highest equilibrium temperature of the solid hydrate formed was 9.4°C at the mass fraction 0.35 of TBPOx in aqueous solution. The largest dissociation heat was 186.0 ± 0.5 kJ·kg at the mass fraction of 0.35. Comparing with other PCMs with close phase equilibrium temperatures, TBPOx hydrate is superior in safety and sustainability. These results indicate that TBPOx hydrate would be suitable as the thermal storage medium for the general air conditioning systems.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7378790 | PMC |
http://dx.doi.org/10.3389/fchem.2020.00547 | DOI Listing |
ACS Appl Mater Interfaces
January 2025
Key Laboratory of Cryogenics Science and Technology, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Laboratory of Controllable Preparation and Application of Nanomaterials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
Sublethal tumor cells have an urgent need for energy, making it common for them to switch metabolic phenotypes between glycolysis and oxidative phosphorylation (OXPHOS) for compensatory energy supply; thus, the synchronous interference of dual metabolic pathways for limiting energy level is essential in inhibiting sublethal tumor growth. Herein, a multifunctional nanoplatform of Co-MOF-loaded anethole trithione (ADT) and myristyl alcohol (MA), modified with GOx and hyaluronic acid (HA) was developed, namely, CAMGH. It could synchronously interfere with dual metabolic pathways including glycolysis and OXPHOS to restrict the adenosine triphosphate (ATP) supply, achieving the inhibition to sublethal tumors after microwave (MW) thermal therapy.
View Article and Find Full Text PDFFASEB J
January 2025
Department of Radiology, C.J. Gorter MRI Center, Leiden University Medical Center, Leiden, The Netherlands.
Brown adipose tissue (BAT) is a metabolically highly active tissue that dissipates energy stored within its intracellular triglyceride droplets as heat. Others have previously utilized MRI to show that the fat fraction of human supraclavicular BAT (scBAT) decreases upon cold exposure, compared with baseline (i.e.
View Article and Find Full Text PDFSensors (Basel)
December 2024
Department of Computer and Information Systems, The University of Aizu, Aizuwakamatsu 965-8580, Fukushima, Japan.
In the current era of advanced IoT technology, human occupancy monitoring and positioning technology is widely used in various scenarios. For example, it can optimize passenger flow in public transportation systems, enhance safety in large shopping malls, and adjust smart home devices based on the location and number of occupants for energy savings. Additionally, in homes requiring special care, it can provide timely assistance.
View Article and Find Full Text PDFSensors (Basel)
December 2024
China Institute of Atomic Energy, P.O. Box 275 (26), Beijing 102413, China.
Fast-neutron reactors are an important representative of Generation IV nuclear reactors, and due to the unique structure and material properties of fast reactor fuel, traditional mechanical cutting methods are not applicable. In contrast, laser cutting has emerged as an ideal alternative. However, ensuring the stability of optical fibers and laser cutting heads under high radiation doses, as well as maintaining cutting quality after irradiation, remains a significant technical challenge.
View Article and Find Full Text PDFNutrients
December 2024
Institute of Quality Standards and Testing Technology for Agro-Products of Chinese Academy of Agricultural Sciences, Beijing 100081, China.
Background/objectives: Polyphenols represent a new strategy of dietary intervention for heat stress regulation.
Methods: The metabolic and genetic effects of three heat stress-regulated mung bean polyphenols on mouse small intestinal epithelial Mode-k cells were investigated by metabolomics-transcriptomics correlation analysis at different heat stress levels.
Results: Lipid metabolism, energy metabolism, and nervous system pathways were the key metabolic regulatory pathways.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!