Liver injury occurs frequently during sepsis, which leads to high mortality and morbidity. A previous study has suggested that salvianolic acid B (SalB) is protective against sepsis-induced lung injury. However, whether SalB is able to protect against sepsis-induced liver injury remains unclear. The present study aimed to investigate the effects of SalB on sepsis-induced liver injury and its potential underlying mechanisms. Sepsis was induced in mice using a cecal ligation and puncture (CLP) method. The mice were treated with SalB (30 mg/kg intraperitoneally) at 0.5, 2 and 8 h after CLP induction. Pathological alterations of the liver were assessed using hematoxylin and eosin staining. The serum levels of alanine transaminase (ALT), aspartate aminotransferase (AST), tumor necrosis factor (TNF)-α and interleukin (IL)-6 were measured. The hepatic mRNA levels of TNF-α, IL-6, Bax and Bcl-2 were also detected. The results suggested that treatment with SalB ameliorated sepsis-induced liver injury in the mice, as supported by the mitigated pathologic changes and lowered serum aminotransferase levels. SalB also decreased the levels of the inflammatory cytokines TNF-α and IL-6 in the serum and the liver of the CLP model mice. In addition, SalB significantly downregulated Bax expression and upregulated Bcl-2 expression, and upregulated the expression levels of SIRT1 and PGC-1α. However, when sirtuin 1 (SIRT1) small interfering RNA was co-administered with SalB, the protective effects of SalB were attenuated and the expression levels of SIRT1 and PGC-1α were reduced. In summary, these results indicate that SalB mitigates sepsis-induced liver injury via reduction of the inflammatory response and hepatic apoptosis, and the underlying mechanism may be associated with the activation of SIRT1/PGC-1α signaling.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7401829PMC
http://dx.doi.org/10.3892/etm.2020.9020DOI Listing

Publication Analysis

Top Keywords

liver injury
24
sepsis-induced liver
20
salb
10
salvianolic acid
8
liver
8
activation sirt1/pgc-1α
8
sirt1/pgc-1α signaling
8
salb protective
8
effects salb
8
tnf-α il-6
8

Similar Publications

Disturbances of the intestinal barrier enabling bacterial translocation exacerbate alcoholic liver disease (ALD). GG (LGG) has been shown to exert beneficial effects in gut dysbiosis and chronic liver disease. The current study assessed the combined effects of LGG and metformin, which play roles in anti-inflammatory and immunoregulatory processes, in alcohol-induced liver disease mice.

View Article and Find Full Text PDF

Immunologic bile duct destruction is a pathogenic condition associated with vanishing bile duct syndrome (VBDS) after liver transplantation and hematopoietic stem-cell transplantation. As the bile acid receptor sphingosine 1-phosphate receptor 2 (S1PR2) plays a critical role in recruitment of bone marrow-derived monocytes/macrophages to sites of cholestatic liver injury, S1PR2 expression was examined using cultured macrophages and patient tissues. Bile canaliculi destruction precedes intrahepatic ductopenia; therefore, we focused on hepatocyte S1PR2 and the downstream RhoA/Rho kinase 1 (ROCK1) signaling pathway and bile canaliculi alterations using three-dimensional hepatocyte culture models that form obvious bile canaliculus-like networks.

View Article and Find Full Text PDF

Dietary contamination with aflatoxin B (AFB), which can lead to severe liver damage, poses a great threat to livestock and poultry breeding and has detrimental impacts on food safety. Selenomethionine (SeMet), with anti-inflammatory, antioxidative, and detoxifying effects, is regarded as a beneficial food additive. However, whether SeMet can reduce AFB-induced liver injury and intestinal microbial disorders in rabbits remains to be revealed.

View Article and Find Full Text PDF

Liver ischemia-reperfusion (IR) injury is a common complication following liver surgery, significantly impacting the prognosis of liver transplantation and other liver surgeries. Betaine-homocysteine methyltransferase (BHMT), a crucial enzyme in the methionine cycle, has been previously confirmed the pivotal role in hepatocellular carcinoma, and it has also been demonstrated that BHMT inhibits inflammation, apoptosis, but its role in liver IR injury remains unknow. Following I/R injury, we found that BHMT expression was significantly upregulated in human liver transplant specimens, mice and hepatocytes.

View Article and Find Full Text PDF

Recipients often suffer from hyperlactatemia during liver transplantation (LT), but whether hyperlactatemia exacerbates hepatic ischemia-reperfusion injury (IRI) after donor liver implantation remains unclear. Here, the role of hyperlactatemia in hepatic IRI is explored. In this work, hyperlactatemia is found to exacerbate ferroptosis during hepatic IRI.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!