The Superior Colliculus and Amygdala Support Evaluation of Face Trait in Blindsight.

Front Neurol

Wellcome Centre for Integrative Neuroimaging, FMRIB, Nuffield Department of Clinical Neurosciences, University of Oxford, Oxford, United Kingdom.

Published: July 2020

Humans can respond rapidly to viewed expressions of fear, even in the absence of conscious awareness. This is demonstrated using visual masking paradigms in healthy individuals and in patients with cortical blindness due to damage to the primary visual cortex (V1) - so called affective blindsight. Humans have also been shown to implicitly process facial expressions representing important social dimensions. Two major axes, dominance and trustworthiness, are proposed to characterize the social dimensions of face evaluation. The processing of both types of implicit stimuli is believed to occur via similar subcortical pathways involving the amygdala. However, we do not know whether unconscious processing of more subtle expressions of facial traits can occur in blindsight, and if so, how. To test this, we studied 13 patients with unilateral V1 damage and visual field loss. We assessed their ability to detect and discriminate faces that had been manipulated along two orthogonal axes of trustworthiness and dominance to generate five trait levels inside the blind visual field: dominant, submissive, trustworthy, untrustworthy, and neutral. We compared neural activity and functional connectivity in patients classified as blindsight positive or negative for these stimuli. We found that dominant faces were most likely to be detected above chance, with individuals demonstrating unique interactions between performance and face trait. Only patients with blindsight ( = 8) showed significant preference in the superior colliculus and amygdala for face traits in the blind visual field, and a critical functional connection between the amygdala and superior colliculus in the damaged hemisphere. We also found a significant correlation between behavioral performance and fMRI activity in the amygdala and lateral geniculate nucleus across all participants. Our findings confirm that affective blindsight involving the superior colliculus and amygdala extends to the processing of socially salient but emotionally neutral facial expressions when V1 is damaged. This pathway is distinct from that which supports motion blindsight, as both types of blindsight can exist in the absence of the other with corresponding patterns of residual connectivity.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7379153PMC
http://dx.doi.org/10.3389/fneur.2020.00769DOI Listing

Publication Analysis

Top Keywords

superior colliculus
16
colliculus amygdala
12
visual field
12
face trait
8
blindsight
8
blindsight humans
8
affective blindsight
8
facial expressions
8
social dimensions
8
blind visual
8

Similar Publications

Volumetric alterations in auditory and visual subcortical nuclei following perinatal deafness in felines.

Neuroimage

January 2025

Integrated Program in Neuroscience, McGill University, Montreal, Quebec, Canada; Department of Physiology, McGill University, Montreal, Quebec, Canada. Electronic address:

In response to sensory deprivation, the brain adapts to efficiently navigate a modified perceptual environment through a process referred to as compensatory crossmodal plasticity, allowing the remaining senses to repurpose deprived regions and networks. A mechanism that has been proposed to contribute to this plasticity involves adaptations within subcortical nuclei that trigger cascading effects throughout the brain. The current study uses 7T MRI to investigate the effect of perinatal deafness on the volumes of subcortical structures in felines, focusing on key sensory nuclei within the brainstem and thalamus.

View Article and Find Full Text PDF

Glaucoma is a neurodegenerative disease characterized by the loss of retinal ganglion cells (RGCs), with intraocular pressure (IOP) being its primary risk factor. Despite controlling IOP, the neurodegenerative process often continues. Therefore, substances with neuroprotective, antioxidant, and anti-inflammatory properties could protect against RGC death.

View Article and Find Full Text PDF

Stronger premicrosaccadic sensitivity enhancement for dark contrasts in the primate superior colliculus.

Sci Rep

January 2025

Werner Reichardt Centre for Integrative Neuroscience, University of Tübingen, Otfried-Müller Str. 25, 72076, Tübingen, Germany.

Microsaccades are associated with enhanced visual perception and neural sensitivity right before their onset, and this has implications for interpreting experiments involving the covert allocation of peripheral spatial attention. However, the detailed properties of premicrosaccadic enhancement are not fully known. Here we investigated how such enhancement in the superior colliculus depends on luminance polarity.

View Article and Find Full Text PDF

Probabilistically constrained vector summation of motion direction in the mouse superior colliculus.

Curr Biol

January 2025

Department of Psychology, University of Virginia, Charlottesville, VA 22904, USA; Department of Biology, University of Virginia, Charlottesville, VA 22904, USA. Electronic address:

Visual motion is a crucial cue for the brain to track objects and take appropriate actions, enabling effective interactions with the environment. Here, we study how the superior colliculus (SC) integrates motion information using asymmetric plaids composed of drifting gratings of different directions and speeds. With both in vivo electrophysiology and two-photon calcium imaging, we find that mouse SC neurons integrate motion direction by performing vector summation of the component gratings.

View Article and Find Full Text PDF

Unlabelled: Multiple sources innervate the visual thalamus to influence image-forming vision prior to the cortex, yet it remains unclear how non-retinal and retinal input coordinate to shape thalamic visual selectivity. Using dual-color two-photon calcium imaging in the thalamus of awake mice, we observed similar coarse-scale retinotopic organization between axons of superior colliculus neurons and retinal ganglion cells, both providing strong converging excitatory input to thalamic neurons. At a fine scale of ∼10 µm, collicular boutons often shared visual feature preferences with nearby retinal boutons.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!