Neural implants that deliver multi-site electrical stimulation to the nervous systems are no longer the last resort but routine treatment options for various neurological disorders. Multi-site electrical stimulation is also widely used to study nervous system function and neural circuit transformations. These technologies increasingly demand dynamic electrical stimulation and closed-loop feedback control for real-time assessment of neural function, which is technically challenging since stimulus-evoked artifacts overwhelm the small neural signals of interest. We report a novel and versatile artifact removal method that can be applied in a variety of settings, from single- to multi-site stimulation and recording and for current waveforms of arbitrary shape and size. The method capitalizes on linear electrical coupling between stimulating currents and recording artifacts, which allows us to estimate a multi-channel linear Wiener filter to predict and subsequently remove artifacts via subtraction. We confirm and verify the linearity assumption and demonstrate feasibility in a variety of recording modalities, including sciatic nerve stimulation, bilateral cochlear implant stimulation, and multi-channel stimulation and recording between the auditory midbrain and cortex. We demonstrate a vast enhancement in the recording quality with a typical artifact reduction of 25-40 dB. The method is efficient and can be scaled to arbitrary number of stimulus and recording sites, making it ideal for applications in large-scale arrays, closed-loop implants, and high-resolution multi-channel brain-machine interfaces.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7379342 | PMC |
http://dx.doi.org/10.3389/fnins.2020.00709 | DOI Listing |
Introduction: Available therapies for peripheral nerve injury (PNI) include surgical and non-surgical treatments. Surgical treatment includes neurorrhaphy, grafting (allografts and autografts) and tissue-engineered grafting (artificial nerve guide conduits), while non-surgical treatment methods include electrical stimulation, magnetic stimulation, laser phototherapy and administration of nerve growth factors. However, the treatments currently available to best manage the different PNI manifestations remain undetermined.
View Article and Find Full Text PDFPacing Clin Electrophysiol
December 2024
Arrhythmia Unit, Department of Cardiology, Hospital Juan Ramón Jiménez, Huelva, Spain.
Background: Interventricular dyssynchrony derived from the classic non-physiological stimulation (n-PS) of the right ventricle (RV) is a known cause of left ventricular dysfunction (LVDys).
Methods: This was a prospective descriptive single-center study. We analyzed patients who develop LVDys with n-PS, and the results after upgrading to conduction system pacing (CSP).
Disabil Rehabil
December 2024
Discipline of Physiotherapy, Graduate School of Health, Faculty of Health, University of Technology Sydney, Ultimo, Australia.
Introduction: Electrical stimulation (E-stim) can reduce the impact of complications, like spasticity, bladder dysfunction in people with spinal cord injuries (SCIs), enhancing quality of life and health outcomes. With SCI prevalence high in regional Australia and a shift towards home-based community integrated care, the perspectives of people with SCI and healthcare professionals on current and future use of E-stim home-devices are needed.
Methods: A mixed-methods concurrent triangulation approach was used.
BMC Musculoskelet Disord
December 2024
Faculty of Rehabilitation, Kobe Gakuin University, 518 Arise, Ikawadani-cho, Nishi-ku, Kobe, Hyogo, 651-2180, Japan.
Background: Exercise-induced hypoalgesia (EIH) is characterized by a reduction in pain perception and sensitivity across both exercising and non-exercising body parts during and after a single bout of exercise. EIH is mediated through central and peripheral mechanisms; however, the specific effect of muscle contraction alone on EIH remains unclear. Moreover, previous studies on electrical muscle stimulation (EMS) have primarily focused on local analgesic effects, often relying on subjective pain reports.
View Article and Find Full Text PDFNat Biomed Eng
December 2024
Department of Psychiatry and Behavioral Sciences, University of Minnesota, Minneapolis, MN, USA.
Deep brain stimulation (DBS), a proven treatment for movement disorders, also holds promise for the treatment of psychiatric and cognitive conditions. However, for DBS to be clinically effective, it may require DBS technology that can alter or trigger stimulation in response to changes in biomarkers sensed from the patient's brain. A growing body of evidence suggests that such adaptive DBS is feasible, it might achieve clinical effects that are not possible with standard continuous DBS and that some of the best biomarkers are signals from the cerebral cortex.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!