Background And Aims: Potential drug resistance (DR) related variants in the hepatitis B virus (HBV) reverse transcriptase (RT) region may be associated with the effectiveness of antiviral drugs and disease progression. The aim of this study was to investigate the prevalence and clinical characteristics of potential DR-related variants in Chinese CHB patients not receiving nucleos(t)ide analogues (NAs).
Patients And Methods: Two hundred and six untreated CHB patients from Huzhou Central Hospital in eastern China were recruited for this study. The serum DNA was extracted and the HBV RT region was amplified using nest polymerase chain reaction (nest-PCR). The 42 potential DR-related variants were analyzed by direct sequencing.
Results: Among these CHB patients, HBV genotype B and genotype C were identified in 121 (58.7%) and 85 (41.3%) patients, respectively. Potential DR-related variants were detected in 42.7% (88/206) of patients. Primary and secondary DR variants were found in 7.3% (15/206) of patients, including rtL80I/V, rtI169T, rtV173L rtL180M, rtA181T/V, rtM204I/V, and rtN236T. The variants at rt53, rt82, rt221, rt233, rt237, and rt256 were specific for genotype B, and those at rt38, rt84, rt126, rt139, rt153, rt191, rt214, rt238, and rt242 were specific for genotype C. Moreover, the variation frequency in the A-B interdomain (3.96%) was significantly higher than that in the functional domains (1.17%) and non-A-B interdomains (1.11%). Multivariate logistic regression analysis showed that lower HBV-DNA load (<10 IU/mL) was an independent factor associated with potential DR-related variants in untreated CHB patients ( <0.05).
Conclusion: Potential DR-related variants were frequent and complex in untreated Chinese CHB patients. Furthermore, the variants may contribute to decreased serum HBV-DNA loads. However, the effects of potential DR-related variants on the antiviral therapy and liver disease progression require further study.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7381783 | PMC |
http://dx.doi.org/10.2147/IDR.S249476 | DOI Listing |
Ophthalmol Ther
January 2025
International Health Policy Program (IHPP), Ministry of Public Health, Nonthaburi, Thailand.
Introduction: Screening diabetic retinopathy (DR) for timely management can reduce global blindness. Many existing DR screening programs worldwide are non-digital, standalone, and deployed with grading retinal photographs by trained personnel. To integrate the screening programs, with or without artificial intelligence (AI), into hospital information systems to improve their effectiveness, the non-digital workflow must be transformed into digital.
View Article and Find Full Text PDFNutrients
December 2024
Department of Biological Sciences and Bioengineering, Inha University, Incheon 22212, Republic of Korea.
Dietary restriction (DR) has been reported to be a significant intervention that influences lipid metabolism and potentially modulates the aging process in a wide range of organisms. Lipid metabolism plays a pivotal role in the regulation of aging and longevity. In this review, we summarize studies on the significant role of lipid metabolism in aging in relation to DR.
View Article and Find Full Text PDFJ Transl Med
December 2024
Department of Ophthalmology, Zhujiang Hospital, Southern Medical University, 253 Industrial Avenue, Guangzhou, 510282, China.
Background: Diabetic retinopathy (DR) is the most important complication of Type 2 Diabetes (T2D) in eyes. Despite its prevalence, the early detection and management of DR continue to pose considerable challenges. Our research aims to elucidate potent drug targets that could facilitate the identification of DR and propel advancements in its therapeutic strategies.
View Article and Find Full Text PDFNaunyn Schmiedebergs Arch Pharmacol
November 2024
Shaanxi Eye Hospital, Xi'an People's Hospital (Xi'an Fourth Hospital), Affiliated People's Hospital of Northwest University, 21 Jiefang Road, Xi'an, 710004, China.
Diabetic retinopathy (DR) is a leading cause of blindness globally. Buyang Huanwu decoction (BHD) is a traditional Chinese medicine for treating DR, but its therapeutic mechanisms are not fully understood. This study aimed to elucidate and validate the underlying mechanisms of BHD in DR treatment through network pharmacology and in vitro experiments.
View Article and Find Full Text PDFAppl Microbiol Biotechnol
October 2024
Department of Ophthalmology, Shanghai General Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!