Suppression of CXCL-1 Could Restore Necroptotic Pathway in Chronic Lymphocytic Leukemia.

Onco Targets Ther

Department of Hematology, Zhongshan Hospital, Fudan University, Shanghai, People's Republic of China.

Published: July 2020

Purpose: To clarify the role of different cytokines and selenite in the defective necroptotic pathway of chronic lymphocytic leukemia (CLL).

Patients And Methods: We randomly collected the peripheral blood samples of 11 untreated CLL patients and 10 healthy volunteers, and then separated B lymphocytes from peripheral blood. Then, real-time polymerase chain reaction (PCR), enzyme-linked immunosorbent assay (ELISA) and Western Blot were performed to detect the expression of different cytokines, including CXC-motif chemokine ligand 1 (CXCL-1). Finally, we used flow cytometry to analyze the percentage of surviving cells to figure out whether CLL cells or normal B lymphocytes underwent necroptosis.

Results: 1) The high expression of CXCL-1 was seen in CLL cells compared with normal B lymphocytes (p = 0.0001, adjusted p =0.0012); 2) The downregulation of CXCL-1 was shown in normal B lymphocytes after induction by TNF-α and z-VAD; 3) CLL cells could restore necroptosis induced by TNF-α and z-VAD after knockdown of CXCL-1; 4) The transcriptional and translational expression of LEF-1 were downregulated after the knockdown of CXCL-1 in CLL cells; 5. 3.2μM selenite could help CLL cells restore necroptosis (p = 0.0102) and inhibit the transcriptional and translational expression of CXCL-1.

Conclusion: CXCL-1 played an important role in the defective necroptosis of CLL cells and regulated the expression of LEF-1. Selenite could inhibit the expression of CXCL-1 and help CLL cells restore necroptosis together with TNF-α and z-VAD. Selenite might be the potential medication of CLL in the future.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7371606PMC
http://dx.doi.org/10.2147/OTT.S256993DOI Listing

Publication Analysis

Top Keywords

cll cells
28
normal lymphocytes
12
tnf-α z-vad
12
cells restore
12
restore necroptosis
12
cll
9
necroptotic pathway
8
pathway chronic
8
chronic lymphocytic
8
lymphocytic leukemia
8

Similar Publications

Characterization of TFIIE-regulated genes by transcriptome analysis.

Turk J Biol

October 2024

Faculty of Science, Molecular Biology and Genetics, İhsan Doğramacı Bilkent University, Ankara, Turkiye.

Background/aim: Previous studies on general transcription factor II E (GTF2E) showed that it is associated with certain groups of diseases, such as colon cancer and trichothiodystrophy, but the global effect of GTF2E on cellular processes is still not widely characterized. This study aimed to investigate and characterize the effect of GTF2E on the transcription level of genes and identify the cellular processes and diseases associated with GTF2E.

Materials And Methods: The human colorectal carcinoma cell line HCT116 used in the study was transfected at a 30 nM concentration with siGTF2E1 or nontarget negative siRNA.

View Article and Find Full Text PDF

Metabolic reprogramming, malignant transformation and metastasis: lessons from chronic lymphocytic leukaemia and prostate cancer.

Cancer Lett

January 2025

Clinical and Health Sciences, University of South Australia, Adelaide, Australia; Department of Histopathology, Trinity College Dublin, St. James's Hospital, Dublin, Ireland. Electronic address:

Metabolic reprogramming is a hallmark of cancer, crucial for malignant transformation and metastasis. Chronic lymphocytic leukaemia (CLL) and prostate cancer exhibit similar metabolic adaptations, particularly in glucose and lipid metabolism. Understanding this metabolic plasticity is crucial for identifying mechanisms contributing to metastasis.

View Article and Find Full Text PDF

The multi-faceted roles of MYC in the prognosis of chronic lymphocytic leukemia.

Leuk Lymphoma

January 2025

Centre de Recherches en Cancérologie de Toulouse, INSERM UMR1037, CNRS UMR5071, Université Toulouse III-Paul Sabatier, Toulouse, France.

In this review, we focus on the pro-oncogene MYC, the modes of deregulation in mouse and human B-cells, its undisputable importance in the evaluation of biological prognostication of patients, but also how it impacts on response to modern therapeutics, and how it should be targeted to improve the overall survival of chronic lymphocytic lymphoma (CLL) patients. After an overview of the current understanding of the molecular dysregulation of c-MYC, we will show how CLL, both in its indolent and transformed phases, has developed among other B-cell lymphomas a tight regulation of its expression through the chronic activation of B-Cell Receptors (among others). This is particularly important if one desires to understand the mechanisms at stake in the over-expression of c-MYC especially in the lymph nodes compartment.

View Article and Find Full Text PDF

Background/aim: Blastic plasmacytoid dendritic cell neoplasm (BPDCN) is a rare and highly aggressive hematologic cancer which is difficult to diagnose and has a lot of overlapping features with other diseases, particularly acute myeloid leukemia (AML). BPDCN shares several immunophenotypic markers with AML, such as CD4, CD56, CD123, and HLA-DR, stating the importance of having extending panel of specific immunohistochemical (IHC) markers.

Case Report: This report details a case of CLL who presented with worsening symptoms of recurrent infections and leukocytosis.

View Article and Find Full Text PDF

Chronic lymphocytic leukemia (CLL) is prevalent in adults and is characterized by the accumulation of mature B cells in the blood, bone marrow, lymph nodes, and spleens. Recent progress in therapy and the introduction of targeted treatments [inhibitors of Bruton's tyrosine kinase (BTKi) or inhibitor of anti-apoptotic B-cell lymphoma-2 (Bcl-2i) protein (venetoclax)] in place of chemoimmunotherapy have significantly improved the outcomes of patients with CLL. These advancements have shifted the importance of traditional predictive markers, leading to a greater focus on resistance genes and reducing the significance of mutations, such as TP53 and del(17p).

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!