Shifts in soil bacterial diversity and community composition are suggested to be induced by elevated input of nitrogen (N) fertilization with implications for soil quality, and consequently production. In this study, we evaluated the impacts of recommended fertilization (RF) and conventional fertilization (CF) on soil chemical properties, crop yield, bacterial diversity, and community composition from two long-term experiments conducted in fluvo-aquic soil and black soil of China. Each site comprised of four treatments, i.e., RF N-, RF N+, CF N-, CF N+. No N fertilization was indicated by N- and N fertilization was indicated by N+. Across both sites, N fertilization significantly increased crop yield compared with no N fertilization and RF successfully enhanced crop yield over CF. Interestingly, the RF maintained bacterial diversity, while CF depressed bacterial diversity in the two soils. Microbial taxa performing important ecological roles such as order Rhodospirillales and Bacillales were significantly enhanced in the RF approach, while declined under CF. Furthermore, the results of partial least square path modeling revealed that soil available phosphorus (AP) negatively affected bacterial diversity while it positively affected bacterial community structure in fluvo-aquic soils. In contrast, soil pH was positively linked with both bacterial diversity and community structure in black soil. Overall, our study demonstrated that RF is an environmentally friendly approach which not only maintained above ground plant productivity, but also preserved belowground microbial populations and important soil variables regulating bacterial communities varied in different soil types.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7466009 | PMC |
http://dx.doi.org/10.3390/microorganisms8081193 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!