Near-infrared (NIR) spectroscopy is widely used to predict soil organic carbon (SOC) because it is rapid and accurate under proper calibration. However, the prediction accuracy of the calibration model may be greatly reduced if the soil characteristics of some new target areas are different from the existing soil spectral library (SSL), which greatly limits the application potential of the technology. We attempted to solve the problem by building a large-scale SSL or using the spiking method. A total of 983 soil samples were collected from Zhejiang Province, and three SSLs were built according to geographic scope, representing the provincial, municipal, and district scales. The partial least squares (PLS) algorithm was applied to establish the calibration models based on the three SSLs, and the models were used to predict the SOC of two target areas in Zhejiang Province. The results show that the prediction accuracy of each model was relatively poor regardless of the scale of the SSL (residual predictive deviation (RPD) < 2.5). Then, the Kennard-Stone (KS) algorithm was applied to select 5 or 10 spiking samples from each target area. According to different SSLs and numbers of spiking samples, different spiked models were established by the PLS. The results show that the predictive ability of each model was improved by the spiking method, and the improvement effect was inversely proportional to the scale of the SSL. The spiked models built by combining the district scale SSL and a few spiking samples achieved good prediction of the SOC of two target areas (RPD = 2.72 and 3.13). Therefore, it is possible to accurately measure the SOC of new target areas by building a small-scale SSL with a few spiking samples.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7472253PMC
http://dx.doi.org/10.3390/s20164357DOI Listing

Publication Analysis

Top Keywords

target areas
16
spiking samples
16
ssl spiking
12
soc target
12
scale ssl
12
soil organic
8
organic carbon
8
target area
8
soil spectral
8
prediction accuracy
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!