A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Biomimetic device and foreign body reaction cooperate for efficient tumour cell capture in murine advanced ovarian cancer. | LitMetric

Metastasis is facilitated by the formation of pre-metastatic niches through the remodelling of the extracellular matrix (ECM) promoted by haematopoietic and stromal cells. The impact of these primed sites is pronounced for intraperitoneal metastases, where the cavity-exposed ECM supports the attachment of the disseminating tumour cells. Likewise, implantation of biomaterial scaffolds influences metastatic progression systemically through a foreign body reaction (FBR). In this study, we integrated the concept of creating an artificial niche to capture tumour cells actively disseminating in the peritoneal cavity with a therapeutic strategy modulating the interactions of metastatic cells with the ECM. The aim was to transform a disseminated disease into a focal disease. For this, we designed and developed a 'biomimetic' ECM composed of a nonresorbable three-dimensional scaffold with collagen coating and characterized the FBR to the implanted biomaterial. We also analysed the safety of the implanted devices and their ability to capture tumour cells in different murine preclinical models of advanced ovarian cancer. Implantation of the biomimetic devices resulted in an initial inflammatory reaction that transformed progressively into a fibrous connective tissue response. The adhesive capabilities of the scaffold were improved with the ancillary effect of the FBR and showed clinical utility in terms of the efficacy of capture of tumour cells, disease focalization and survival benefit. These results demonstrated the performance and safety of this 'biomimetic' ECM in preclinical models of advanced ovarian cancer. Translated into the clinical setting, this new therapeutic strategy represents the possibility for control of peritoneal carcinomatosis upon primary ovarian debulking surgery and to expand the percentage of patients who are candidates for second rescue surgeries at the time of relapse.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7328160PMC
http://dx.doi.org/10.1242/dmm.043653DOI Listing

Publication Analysis

Top Keywords

tumour cells
16
advanced ovarian
12
ovarian cancer
12
capture tumour
12
foreign body
8
body reaction
8
therapeutic strategy
8
'biomimetic' ecm
8
preclinical models
8
models advanced
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!