How hair deforms steel.

Science

Department of Materials Science and Engineering, Massachusetts Institute of Technology, 77 Massachusetts Avenue, Cambridge, MA 02139, USA.

Published: August 2020

AI Article Synopsis

Article Abstract

Steels for sharp edges or tools typically have martensitic microstructures, high carbide contents, and various coatings to exhibit high hardness and wear resistance. Yet they become practically unusable upon cutting much softer materials such as human hair, cheese, or potatoes. Despite this being an everyday observation, the underlying physical micromechanisms are poorly understood because of the structural complexity of the interacting materials and the complex boundary conditions of their co-deformation. To unravel this complexity, we carried out interrupted tests and in situ electron microscopy cutting experiments with two micromechanical testing setups. We investigated the findings analytically and numerically, revealing that the spatial variation of lath martensite structure plays the key role leading to a mixed-mode II-III cracking phenomenon before appreciable wear.

Download full-text PDF

Source
http://dx.doi.org/10.1126/science.aba9490DOI Listing

Publication Analysis

Top Keywords

hair deforms
4
deforms steel
4
steel steels
4
steels sharp
4
sharp edges
4
edges tools
4
tools typically
4
typically martensitic
4
martensitic microstructures
4
microstructures high
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!