Genetic approaches in model organisms have consistently demonstrated that molecular traits such as gene expression are under genetic regulation, similar to clinical traits. The resulting expression quantitative trait loci (eQTL) have revolutionized our understanding of genetic regulation and identified numerous candidate genes for clinically relevant traits. More recently, these analyses have been extended to other molecular traits such as protein abundance, metabolite levels, and miRNA expression. Here, we performed global hepatic eQTL and microRNA expression quantitative trait loci (mirQTL) analysis in a population of Diversity Outbred mice fed two different diets. We identified several key features of eQTL and mirQTL, namely differences in the mode of genetic regulation ( or ) between mRNA and miRNA. Approximately 50% of mirQTL are regulated by a -acting factor, compared to ∼25% of eQTL. We note differences in the heritability of mRNA and miRNA expression and variance explained by each eQTL or mirQTL. In general, -acting variants affecting mRNA or miRNA expression explain more phenotypic variance than -acting variants. Lastly, we investigated the effect of diet on the genetic architecture of eQTL and mirQTL, highlighting the critical effects of environment on both eQTL and mirQTL. Overall, these data underscore the complex genetic regulation of two well-characterized RNA classes (mRNA and miRNA) that have critical roles in the regulation of clinical traits and disease susceptibility.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7463293PMC
http://dx.doi.org/10.1534/genetics.120.303481DOI Listing

Publication Analysis

Top Keywords

mrna mirna
20
mirna expression
16
genetic regulation
16
eqtl mirqtl
16
genetic architecture
8
diversity outbred
8
outbred mice
8
molecular traits
8
regulation clinical
8
clinical traits
8

Similar Publications

Introduction: Colorectal cancer (CRC) is the second most common cause of cancer-related deaths globally. The gut microbiota, along with adenomatous polyps (AP), has emerged as a plausible contributor to CRC progression. This study aimed to scrutinize the impact of the FadA antigen derived from Fusobacterium nucleatum on the expression levels of the ANXA2 ceRNA network and assess its relevance to CRC advancement.

View Article and Find Full Text PDF

Background/aims: Bruise is the extravasation of blood that may be mild or severe. Bone marrow mesenchymal stem cells (BM-MSCs) are one of the most promising cells used in regenerative medicine for treating many disorders. We aimed to evaluate the efficiency of BM-MSCs in treating cutaneous bruises.

View Article and Find Full Text PDF

Role and therapeutic considerations of SIRT1 in epilepsy.

Neuroscience

January 2025

The Second Affiliated Hospital, Department of Pediatrics, Hengyang Medical School, University of South China, Hengyang, Hunan 4210001, China. Electronic address:

Epilepsy is a primary study focus for scientists worldwide due to its prevalence and poor prognosis. Silent information regulator 1 (SIRT1), a nicotinamide adenine dinucleotide-dependent deacetylase, is becoming increasingly recognized for its critical role in the pathophysiology and progression of epilepsy. The treatment of epilepsy remains challenging despite the discovery of numerous factors that contribute to the development of several beneficial medications.

View Article and Find Full Text PDF

The aim of present study was to evaluate the impact of perimenopause on insulin resistance. Specifically, insulin sensitivity was assessed in a perimenopausal mouse model treated with 4-vinylcyclohexene diepoxide (VCD), together with the changes in exosomal miRNA and hepatic mRNA expression profiles. Homeostasis model assessment of insulin resistance (HOMA-IR) was utilized to assess the status of insulin resistance, and insulin action was evaluated during menopausal transition.

View Article and Find Full Text PDF

Unveiling novel biomarkers for platinum chemoresistance in ovarian cancer.

Open Med (Wars)

January 2025

Department of Obstetrics and Gynecology, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, P.R. China.

Primary chemoresistance to platinum-based treatment is observed in approximately 33% of individuals diagnosed with ovarian cancer; however, conventional clinical markers exhibit limited predictive value for chemoresistance. This study aimed to discover new genetic markers that can predict primary resistance to platinum-based chemotherapy. Through the analysis of three GEO datasets (GSE114206, GSE51373, and GSE63885) utilizing bioinformatics methodologies, we identified two specific genes, MFAP4 and EFEMP1.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!