Objective: Enable accurate estimation of vertical average loading rate (VALR) in runners with one or more wearable inertial measurement units (IMUs).
Methods: A subject-independent convolutional neural network (CNN) model was developed to estimate VALR from wearable IMUs. Fifteen runners wore IMUs at the trunk, pelvis, thigh, shank, and foot and ran on an instrumented treadmill for combinations of the following conditions: foot-strike (forefoot, mid-foot, rear-foot), step rate (90% to 110% of baseline), running speed (2.4 m/s and 2.8 m/s) and footwear (standard and minimalist running shoes). Thirty-one IMU placement configurations with combinations of one to five IMUs were evaluated. VALR estimations from the wearable IMUs were compared with force-plate VALR measurements.
Results: VALR estimations via the subject-independent CNN model with a single shank-worn IMU were highly correlated (ρ = 0.94) with force-plate VALR measurements and were substantially higher than previously reported peak tibial acceleration correlations with force-plate VALR measurements from shank-worn accelerometers (ρ = 0.44-0.66). Correlation results from the CNN model for a single IMU placed at the foot, pelvis, trunk, and thigh were ρ = 0.91, 0.76, 0.69, and 0.65, respectively. There was no improvement in accuracy from the shank-worn IMU when adding 1-4 additional IMUs from the trunk, pelvis, thigh, or foot.
Conclusion: The proposed subject-independent CNN model with a single shank-worn IMU provides more accurate estimation of VALR than previous wearable sensing approaches.
Significance: This could enable runners to more accurately assess impact loading rates and potentially provide insights into running-related injury risk and prevention.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1109/JBHI.2020.3014963 | DOI Listing |
Sci Rep
January 2025
Department of Electrical Electronical Engineering, Yaşar University, Bornova, İzmir, Turkey.
We aimed to build a robust classifier for the MGMT methylation status of glioblastoma in multiparametric MRI. We focused on multi-habitat deep image descriptors as our basic focus. A subset of the BRATS 2021 MGMT methylation dataset containing both MGMT class labels and segmentation masks was used.
View Article and Find Full Text PDFSci Rep
January 2025
School of Computer Science Engineering and Information Systems, Vellore Institute of Technology, Vellore, India.
This study introduces a novel ensemble learning technique namely Multi-Armed Bandit Ensemble (MAB-Ensemble), designed for lane detection in road images intended for autonomous vehicles. The foundation of the proposed MAB-Ensemble technique is inspired in terms of Multi-Armed bandit optimization to facilitate efficient model selection for lane segmentation. The benchmarking dataset namely TuSimple is used for training, validating and testing the proposed and existing lane detection techniques.
View Article and Find Full Text PDFSci Rep
January 2025
Ministry of Higher Education, Mataria Technical College, Cairo, 11718, Egypt.
The current work introduces the hybrid ensemble framework for the detection and segmentation of colorectal cancer. This framework will incorporate both supervised classification and unsupervised clustering methods to present more understandable and accurate diagnostic results. The method entails several steps with CNN models: ADa-22 and AD-22, transformer networks, and an SVM classifier, all inbuilt.
View Article and Find Full Text PDFSci Total Environ
January 2025
Universidad de Santiago de Chile, Santiago, Chile.
Assessing future snow cover changes is challenging because the high spatial resolution required is typically unavailable from climate models. This study, therefore, proposes an alternative approach to estimating snow changes by developing a super-spatial-resolution downscaling model of snow depth (SD) for Japan using a convolutional neural network (CNN)-based method, and by downscaling an ensemble of models from the Coupled Model Intercomparison Project Phase 6 (CMIP6) dataset. After assessing the coherence of the observed reference SD dataset with independent observations, we leveraged it to train the CNN downscaling model; following its evaluation, we applied the trained model to CMIP6 climate simulations.
View Article and Find Full Text PDFComput Methods Programs Biomed
January 2025
Regional Institute of Ophthalmology, Indira Gandhi Institute of Medical Sciences, Patna, 800025, Bihar, India.
Background And Objectives: Hypertensive Retinopathy (HR) is a retinal manifestation resulting from persistently elevated blood pressure. Severity grading of HR is essential for patient risk stratification, effective management, progression monitoring, timely intervention, and minimizing the risk of vision impairment. Computer-aided diagnosis and artificial intelligence (AI) systems play vital roles in the diagnosis and grading of HR.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!