This study investigated the proteome modulation and physiological responses of Sorghum bicolor plants grown in nutrient solutions containing nitrate (NO) or ammonium (NH) at 5.0 mM, and subjected to salinity with 75 mM NaCl for ten days. Salinity promoted significant reductions in leaf area, root and shoot dry mass of sorghum plants, regardless of nitrogen source; however, higher growth was observed in ammonium-grown plants. The better performance of ammonium-fed stressed plants was associated with low hydrogen peroxide accumulation, and improved CO assimilation and K/Na homeostasis under salinity. Proteomic study revealed a nitrogen source-induced differential modulation in proteins related to photosynthesis/carbon metabolism, energy metabolism, response to stress and other cellular processes. Nitrate-fed plants induced thylakoidal electron transport chain proteins and structural and carbon assimilation enzymes, but these mechanisms seemed to be insufficient to mitigate salt damage in photosynthetic performance. In contrast, the greater tolerance to salinity of ammonium-grown plants may have arisen from: i.) de novo synthesis or upregulation of enzymes from photosynthetic/carbon metabolism, which resulted in better CO assimilation rates under NaCl-stress; ii.) activation of proteins involved in energy metabolism which made available energy for salt responses, most likely by proton pumps and Na/H antiporters; and iii.) reprogramming of proteins involved in response to stress and other metabolic processes, constituting intricate pathways of salt responses. Overall, our findings not only provide new insights of molecular basis of salt tolerance in sorghum plants induced by ammonium nutrition, but also give new perspectives to develop biotechnological strategies to generate more salt-tolerant crops.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.plaphy.2020.06.051 | DOI Listing |
Acta Neuropathol Commun
January 2025
Ophthalmology, Novartis Biomedical Research, Cambridge, MA, USA.
Neurodegeneration in glaucoma patients is clinically identified through longitudinal assessment of structure-function changes, including intraocular pressure, cup-to-disc ratios from fundus images, and optical coherence tomography imaging of the retinal nerve fiber layer. Use of human post-mortem ocular tissue for basic research is rising in the glaucoma field, yet there are challenges in assessing disease stage and severity, since tissue donations with informed consent are often unaccompanied by detailed pre-mortem clinical information. Further, the interpretation of disease severity based solely on anatomical and morphological assessments by histology can be affected by differences in death-to-preservation time and tissue processing.
View Article and Find Full Text PDFJ Transl Med
January 2025
Department of Biochemistry and Molecular Biology, Binzhou Medical University, 346 Guanhai Road, Yantai, 264003, P. R. China.
Immuno-oncology has witnessed remarkable advancements in the past decade, revolutionizing the landscape of cancer therapeutics in an encouraging manner. Among the diverse immunotherapy strategies, mRNA vaccines have ushered in a new era for the therapeutic management of malignant diseases, primarily due to their impressive impact on the COVID-19 pandemic. In this comprehensive review, we offer a systematic overview of mRNA vaccines, focusing on the optimization of structural design, the crucial role of delivery materials, and the administration route.
View Article and Find Full Text PDFBMC Genomics
January 2025
Key Laboratory of Genetic Evolution & Animal Models and Yunnan Key Laboratory of Molecular Biology of Domestic Animals, Kunming Institute of Zoology, Chinese Academy of Sciences, Kunming, 650223, China.
Background: Since their domestication, recent inbreeding together with intensive artificial selection and population bottlenecks have allowed the prevalence of deleterious mutations and the increase of runs-of-homozygosity (ROH) in domestic pigs. This makes pigs a good model to understand the genetic underpinnings of inbreeding depression.
Results: Here we integrated a comprehensive dataset comprising 7239 domesticated pigs and wild boars genotyped by single nucleotide polymorphism (SNP) chips, along with phenotypic data encompassing growth, reproduction and disease-associated traits.
EMBO J
January 2025
Telethon Institute of Genetics and Medicine (TIGEM), 80078, Pozzuoli, Italy.
Endoplasmic reticulum (ER) plasticity and ER-phagy are intertwined processes essential for maintaining ER dynamics. We investigated the interplay between two isoforms of the ER-phagy receptor FAM134B in regulating ER remodeling in differentiating myoblasts. During myogenesis, the canonical FAM134B1 is degraded, while its isoform FAM134B2 is transcriptionally upregulated.
View Article and Find Full Text PDFNat Chem
January 2025
Department of Chemical and Biomolecular Engineering, University of California, Los Angeles, Los Angeles, CA, USA.
Understanding the emergence of complex biochemical systems, such as protein translation, is a great challenge. Although synthetic approaches can provide insight into the potential early stages of life, they do not address the equally important question of why the complex systems of life would have evolved. In particular, the intricacies of the mechanisms governing the transfer of information from nucleic acid sequences to proteins make it difficult to imagine how coded protein synthesis could have emerged from a prebiotic soup.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!