A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Interactive effects of temperature and hypoxia on diffusive water flux and oxygen uptake rate in the tidepool sculpin, Oligocottus maculosus. | LitMetric

AI Article Synopsis

  • * Research on the tidepool sculpin showed that oxygen uptake and water flux increased with temperature, but water flux decreased under hypoxia at constant temperature, indicating a failure of expected responses during stress conditions.
  • * The findings imply that while tidepool sculpins can usually adjust water permeability in low oxygen conditions, this ability is compromised when faced with multiple stressors like high temperature and hypoxia, pointing to the need for further study on gill permeability regulation for species survival in changing environments.

Article Abstract

The osmorespiratory compromise hypothesis posits that respiratory epithelial characteristics and physiological regulatory mechanisms which promote gas permeability also increase permeability to ions and water. The hypothesis therefore predicts that physiological responses which increase effective gas permeability will result in increased effective ion and water permeabilities. Though analyses of water and gas effective permeabilities using high temperature have generally supported the hypothesis, water permeability responses to hypoxia remain equivocal and the combination of high temperature and hypoxia untested. We measured diffusive water flux (DWF) and oxygen uptake rate (Ṁo) in response to acute temperature change, hypoxia, and the combination of high temperature and hypoxia in a hypoxia-tolerant intertidal fish, the tidepool sculpin (Oligocottus maculosus). In support of the osmorespiratory compromise hypothesis, Ṁo and DWF increased with temperature. In contrast, DWF decreased with hypoxia at a constant temperature, a result consistent with previously observed decoupling of water and gas effective permeabilities during hypoxia exposure in some hypoxia tolerant fishes. However, DWF levels during simultaneous high temperature and hypoxia exposure were not different from fish exposed to high temperature in normoxia, possibly suggesting a failure of the mechanism responsible for down-regulating DWF in hypoxia. These results, together with time-course analysis of hypoxia exposure and normoxic recovery, suggest that tidepool sculpins actively downregulate effective water permeability in hypoxia but the mechanism fails with multi-stressor exposure. Future investigations of the mechanistic basis of the regulation of gill permeability will be key to understanding the role of this regulatory ability in the persistence of this species in the dynamic intertidal environment.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.cbpa.2020.110781DOI Listing

Publication Analysis

Top Keywords

high temperature
20
temperature hypoxia
16
hypoxia
12
hypoxia exposure
12
temperature
9
water
8
diffusive water
8
water flux
8
oxygen uptake
8
uptake rate
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!