Ethnopharmacological Relevance: Knee osteoarthritis (KOA) is the most common chronic joint disorder worldwide, which is also a principle consideration for disability. The Bushenhuoxue formula (BSHXF) is a traditional herbal formula which widely applied to the treatment of KOA. However, its pharmacological mechanisms of action have not been clarified.
Aims Of The Study: The study aimed to identify the potential targets and mechanisms of BSHXF in the treatment of KOA through pharmacology-based analyses and experimental validation.
Materials And Methods: The TCMSP database was applied to obtain the chemical compounds and targets of BSHXF, while the protein targets in KOA were determined through GeneCards and OMIM databases. The herb-compound-target and protein-protein interaction (PPI) networks were constructed for topological analyses and hub-targets screening. GO and KEGG enrichment analyses were performed on these core nodes to identify the critical biological processes and signaling pathways. Then destabilization of medial meniscus (DMM)-induced C57BL/6J mice model was established to detect the level of apoptosis via TUNEL assessment, while the expressions of CASP3, CASP8 and CASP9 were determined by immunohistochemistry.
Results: A total of 154 active compounds and 58 targets were predicted. DAVID, ClueGO and Metascape enrichment analyses all proved that BSHXF plays an essential role in regulating apoptosis. Moreover, 3 central nodes of BSHXF are recognized as the active factors involved in the main biological functions, suggesting a potential mechanism of BSHXF for KOA treatment. In vivo experiment revealed that BSHXF significantly inhibited apoptosis and down-regulated the expressions of CASP3, CASP8 and CASP9.
Conclusion: Based on network pharmacology and experimental validation, our study indicated that BSHXF exerted anti-apoptosis effect through inhibiting the expressions of CASP3, CASP8 and CASP9, which could be considered as an effective method for KOA treatment.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.jep.2020.113217 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!