Dose and time-dependent toxicological impact of pantoprazole on vascular endothelium and renal tissue.

Toxicol Lett

Department of Pharmacology, Amity Institute of Pharmacy, Amity University, Uttar Pradesh, 201303, India. Electronic address:

Published: October 2020

Proton pump inhibitors (PPIs) have wide pleiotropic action in addition to their therapeutic potential in gastroesophageal reflux diseases. Conversely, recent reports revealed a significant incidence of toxic events of PPIs including nephritis, osteoporosis, and cardiac damage. Thus, the study was designed to reconcile the deceptive contraindications. The present investigation targeted to reveal the toxic impact of sub-acute and sub-chronic administration of pantoprazole (PPZ) with different concentrations (low dose 4 mg/kg, medium-dose 8 mg/kg and high dose 16 mg/kg once a day) on normal vascular endothelium and renal tissue of rats. Vascular endothelial dysfunction (VED) was estimated by the contractility of an isolated aortic ring, nitrite/nitrate concentration, oxidative stress, and integrity of the endothelium layer. Moreover, the renal abnormalities were further confirmed by an increased level of serum creatinine, blood urea nitrogen (BUN), the incidence of microproteinuria, and structural alteration. Sub-acute administration of PPZ treatment did not produce any toxicological impact on endothelium and renal tissue. Whereas, sub-chronic administration of PPZ treatment causes moderate VED and renal dysfunction in a dose-dependent manner. Sub-chronic treatment of PPZ also influences the mitigation of NO and elevation of oxidative stress. Collecting all the evidence, it concludes that decreased nitric oxide availability and increased levels of oxidative stress may be a possible underlying mechanism of causing VED and renal abnormalities from high-dose PPZ treatment.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.toxlet.2020.07.031DOI Listing

Publication Analysis

Top Keywords

endothelium renal
12
renal tissue
12
oxidative stress
12
ppz treatment
12
toxicological impact
8
vascular endothelium
8
sub-chronic administration
8
renal abnormalities
8
administration ppz
8
ved renal
8

Similar Publications

Renal interstitial fibrosis (RIF) is a common pathway in chronic kidney disease (CKD) that ultimately leads to end-stage renal failure, worsening both glomerulosclerosis and interstitial fibrosis. Ten percent of the adult population in the world suffers from CKD, and as the ageing population continues to rise, it is increasingly regarded as a global threat-a silent epidemic. CKD has been discovered to be closely associated with both long noncoding RNAs (lncRNAs) and microRNAs (miRNAs), while the precise molecular processes behind this relationship are still unclear.

View Article and Find Full Text PDF

Evaluation of the Effects of Mulberry Leaf Extracts L. on Cardiovascular, Renal, and Platelet Function in Experimental Arterial Hypertension.

Nutrients

December 2024

Departamento Fisiología, Facultad Medicina, Instituto Murciano de Investigación Biosanitaria, Universidad de Murcia, 30120 Murcia, Spain.

Introduction: Numerous epidemiological studies have demonstrated that consuming foods rich in polyphenols and flavonoids can have beneficial effects on various diseases, including arterial hypertension (HTN). Recent research from our laboratory has shown that certain flavonoids exhibit antihypertensive properties in several animal models of HTN. Our objective was to evaluate the effect of L.

View Article and Find Full Text PDF

In glomerulopathies, endothelial dysfunction and the presence of histological vascular lesions such as thrombotic microangiopathy, arteriolar hyalinosis, and arteriosclerosis are related to a severe clinical course and worse renal prognosis. The endothelial cell, which naturally has anti-inflammatory and anti-thrombotic regulatory mechanisms, is particularly susceptible to damage caused by various etiologies and can become dysfunctional due to direct/indirect injury or a deficiency of protective factors. In addition, endothelial regulation and protection involve participation of the complement system, factors related to angiogenesis, the renin-angiotensin system (RAS), endothelin, the glycocalyx, the coagulation cascade, interaction between these pathways, interactions between glomerular structures (the endothelium, mesangium, podocyte, and basement membrane) and interstitial structures (tubules, arterioles and small vessels).

View Article and Find Full Text PDF

Systemic and Cardiac Microvascular Dysfunction in Hypertension.

Int J Mol Sci

December 2024

Dipartimento di Biotecnologie e Scienze della Vita, ASST Sette Laghi, Università degli Studi dell'Insubria, 21100 Varese, Italy.

Hypertension exerts a profound impact on the microcirculation, causing both structural and functional alterations that contribute to systemic and organ-specific vascular damage. The microcirculation, comprising arterioles, capillaries, and venules with diameters smaller than 20 μm, plays a fundamental role in oxygen delivery, nutrient exchange, and maintaining tissue homeostasis. In the context of hypertension, microvascular remodeling and rarefaction result in reduced vessel density and elasticity, increasing vascular resistance and driving end-organ damage.

View Article and Find Full Text PDF

Comprehensive review on neprilysin (NEP) inhibitors: design, structure-activity relationships, and clinical applications.

Front Pharmacol

December 2024

Department of Orthodontics, State Key Laboratory of Oral Diseases, West China School of Stomatology, Sichuan University, Chengdu, Sichuan, China.

Neprilysin (NEP), a zinc-dependent membrane-bound metallopeptidase, regulates various bioactive peptides, particularly in kidneys, vascular endothelium, and the central nervous system. NEP's involvement in metabolizing natriuretic peptides, insulin, and enkephalins makes it a promising target for treating cardiovascular and Alzheimer's diseases. Several NEP inhibitors, such as sacubitril and omapatrilat, have been approved for clinical use, which inhibit NEP activity to prolong the bioactivity of beneficial peptides, thereby exerting therapeutic effects.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!