A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 143

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 143
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 209
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 994
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3134
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 574
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 488
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

In vitro, ex vivo and in vivo methods of lung absorption for inhaled drugs. | LitMetric

In vitro, ex vivo and in vivo methods of lung absorption for inhaled drugs.

Adv Drug Deliv Rev

Department of Pharmaceutics, School of Pharmacy, Virginia Commonwealth University, 410 North 12(th) Street, P.O. Box 980533, Richmond, VA 23298-0533, USA. Electronic address:

Published: September 2021

AI Article Synopsis

  • The assessment of lung absorption and drug disposition is crucial for developing inhaled drugs for both local and systemic use, leading to advancements in preclinical methods.
  • Various in vitro models, including ALI-cultured Calu-3, NCI-H441, and hAELVi cells, are evolving alongside emerging technologies like "lung-on-a-chip" and stem cell-derived cells.
  • In vivo methods, particularly in small rodents and large animals, are essential for understanding lung absorption, with promising developments in predicting human pharmacokinetics based on rodent data using kinetic modeling.

Article Abstract

The assessment and prediction of lung absorption and disposition are an increasingly essential preclinical task for successful discovery and product development of inhaled drugs for both local and systemic delivery. Hence, in vitro, ex vivo and in vivo preclinical methods of lung absorption continue to evolve with several technical, methodological and analytical refinements. As in vitro lung epithelial cell monolayer models, the air-liquid interface (ALI)-cultured Calu-3 cells have most frequently been used, but the NCI-H441 and hAELVi cells have now been proposed as the first immortalized human alveolar epithelial cells capable of forming highly-restricted monolayers. The primary ALI-cultured three-dimensional (3D) human lung cell barriers have also become available; efforts to incorporate aerosol drug deposition into the in vitro lung cell models continue; and stem cell-derived lung epithelial cells and "lung-on-a-chip" technology are emerging. The ex vivo isolated perfused rat lung (IPRL) methods have increasing been used, as they enable the kinetic determination of tissue/organ-level diffusive and membrane protein-mediated absorption and competing non-absorptive loss; the assessment of "pre-epithelial" aerosol biopharmaceutical events in the lung, such as dissolution and release; and the ex vivo-to-in vivo extrapolation and prediction. Even so, in vivo small rodent-based methods have been of mainstay use, while large animal-based methods find an additional opportunity to study region-dependent lung absorption and disposition. It is also exciting that human pharmacokinetic (PK) profiles and systemic exposures for inhaled drugs/molecules may be able to be predicted from these in vivo rodent PK data following lung delivery using kinetic modeling approach with allometric scaling. Overall, the value of these preclinical assessments appears to have shifted more to their translational capability of predicting local lung and systemic exposure in humans, in addition to rationalizing optimal inhaled dosage form and delivery system for drugs/molecules in question. It is critically important therefore to make appropriate selection and timely exploitation of the best models at each stage of drug discovery and development program for efficient progress toward product approval and clinical use.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.addr.2020.07.025DOI Listing

Publication Analysis

Top Keywords

lung absorption
16
lung
12
vitro vivo
8
vivo vivo
8
methods lung
8
inhaled drugs
8
absorption disposition
8
vitro lung
8
lung epithelial
8
epithelial cells
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!

A PHP Error was encountered

Severity: Notice

Message: fwrite(): Write of 34 bytes failed with errno=28 No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 272

Backtrace:

A PHP Error was encountered

Severity: Warning

Message: session_write_close(): Failed to write session data using user defined save handler. (session.save_path: /var/lib/php/sessions)

Filename: Unknown

Line Number: 0

Backtrace: