Tightening the Crosslinking Distance Restraints for Better Resolution of Protein Structure and Dynamics.

Structure

CAS Key Laboratory of Magnetic Resonance in Biological Systems, State Key Laboratory of Magnetic Resonance and Atomic Molecular Physics, National Center for Magnetic Resonance at Wuhan, Wuhan Institute of Physics and Mathematics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan, Hubei Province 430071, China; Wuhan National Laboratory for Optoelectronics, Huazhong University of Science and Technology, Wuhan, Hubei Province 430074, China; Beijing National Laboratory for Molecular Sciences, College of Chemistry and Molecular Engineering, and Peking-Tsinghua Center for Life Sciences, Peking University, Beijing 100871, China. Electronic address:

Published: October 2020

Chemical crosslinking coupled with mass spectrometry (CXMS) has been increasingly used in structural biology. CXMS distance restraints are usually applied to Cα or Cβ atoms of the crosslinked residues, with upper bounds typically over 20 Å. The incorporation of loose CXMS restraints only marginally improves the resolution of the calculated structures. Here, we present a revised format of CXMS distance restraints, which works by first modifying the crosslinked residue with a rigid extension derived from the crosslinker. With the flexible side chain explicitly represented, the reformatted restraint can be applied to the modification group instead, with an upper bound of 6 Å or less. The short distance restraint can be represented and back-calculated simply with a straight line. The use of tighter restraints not only afford better-resolved structures but also uncover protein dynamics. Together, our approach enables more information extracted from the CXMS data.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.str.2020.07.010DOI Listing

Publication Analysis

Top Keywords

distance restraints
12
cxms distance
8
restraints
5
cxms
5
tightening crosslinking
4
distance
4
crosslinking distance
4
restraints better
4
better resolution
4
resolution protein
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!