Transvalvular Ventricular Unloading Before Reperfusion in Acute Myocardial Infarction.

J Am Coll Cardiol

Molecular Cardiology Research Institute, Surgical and Interventional Research Laboratories, Tufts Medical Center, Boston, Massachusetts; The Cardiovascular Center, Tufts Medical Center, Boston, Massachusetts. Electronic address:

Published: August 2020

Background: Myocardial damage due to acute ST-segment elevation myocardial infarction (STEMI) remains a significant global health problem. New approaches to limit myocardial infarct size and reduce progression to heart failure after STEMI are needed. Mechanically reducing left ventricular (LV) workload (LV unloading) before coronary reperfusion is emerging as a potential approach to reduce infarct size.

Objectives: Given the central importance of mitochondria in reperfusion injury, we hypothesized that compared with immediate reperfusion (IR), LV unloading before reperfusion improves myocardial energy substrate use and preserves mitochondrial structure and function.

Methods: To explore the effect of LV unloading duration on infarct size, we analyzed data from the STEMI-Door to Unload (STEMI-DTU) trial and then tested the effect of LV unloading on ischemia and reperfusion injury, cardiac metabolism, and mitochondrial function in swine models of acute myocardial infarction.

Results: The duration of LV unloading before reperfusion was inversely associated with infarct size in patients with large anterior STEMI. In preclinical models, LV unloading reduced the expression of hypoxia-sensitive proteins and myocardial damage due to ischemia alone. LV unloading with a transvalvular pump (TV-P) but not with venoarterial extracorporeal membrane oxygenation (ECMO) reduced infarct size. Using unbiased and blinded metabolic profiling, TV-P improved myocardial energy substrate use and preserved mitochondrial structure including cardiolipin content after reperfusion compared with IR or ECMO. Functional testing in mitochondria isolated from the infarct zone showed an intact mitochondrial structure including cardiolipin content, preserved activity of the electron transport chain including mitochondrial complex I, and reduced oxidative stress with TV-P-supported reperfusion but not with IR or ECMO.

Conclusions: These novel findings identify that transvalvular unloading limits ischemic injury before reperfusion, improves myocardial energy substrate use, and preserves mitochondrial structure and function after reperfusion.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC10243472PMC
http://dx.doi.org/10.1016/j.jacc.2020.06.031DOI Listing

Publication Analysis

Top Keywords

infarct size
16
mitochondrial structure
16
unloading reperfusion
12
myocardial energy
12
energy substrate
12
reperfusion
11
unloading
9
myocardial
8
myocardial damage
8
reperfusion injury
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!