Background: Escherichia coli always plays an important role in microbial research, and it has been a benchmark model for the study of molecular mechanisms of microorganisms. Molecular complexes, operons, and functional modules are valuable molecular functional domains of E. coli. The identification of protein complexes and functional modules of E. coli is essential to reveal the principles of cell organization, process, and function. At present, many studies focus on the detection of E. coli protein complexes based on experimental methods. However, based on the large-scale proteomics data set of E. coli, the simultaneous prediction of protein complexes and functional modules, especially the comparative analysis of them is relatively less.
Results: In this study, the Edge Label Propagate Algorithm (ELPA) of the complex biological network was used to predict the protein complexes and functional modules of two high-quality PPI networks of E. coli, respectively. According to the gold standard protein complexes and function annotations provided by EcoCyc dataset, most protein modules predicted in the two datasets matched highly with real protein complexes, cellular processes, and biological functions. Some novel and significant protein complexes and functional modules were revealed based on ELPA. Moreover, through a comparative analysis of predicted complexes with corresponding functional modules, we found the protein complexes were significantly overlapped with corresponding functional modules, and almost all predicted protein complexes were completely covered by one or more functional modules. Finally, on the same PPI network of E. coli, ELPA was compared with a well-known protein module detection method (MCL) and we found that the performance of ELPA and MCL is comparable in predicting protein complexes.
Conclusions: In this paper, a link clustering method was used to predict protein complexes and functional modules in PPI networks of E. coli, and the correlation between them was compared, which could help us to understand the molecular functional units of E. coli better.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7409450 | PMC |
http://dx.doi.org/10.1186/s12866-020-01904-6 | DOI Listing |
Viruses
December 2024
Division of Infectious Diseases and Tropical Medicine, Department of Medicine I, Medical University of Vienna, 1090 Vienna, Austria.
Protein phosphorylation is a crucial regulatory mechanism in cellular homeostasis. The human cytomegalovirus (HCMV) incorporates protein phosphatase 1 (PP1) into its tegument, yet the biological relevance and mechanisms of this incorporation remain unclear. Our study offers the first characterization of the PP1 interactome during HCMV infection and its alterations.
View Article and Find Full Text PDFViruses
December 2024
Division of Virology, ICMR-National Institute of Translational Virology and AIDS Research, Pune 411026, MH, India.
Epstein-Barr virus (EBV) and Kaposi's sarcoma-associated herpesvirus (KSHV), which are the only members of the gamma(γ) herpesviruses, are oncogenic viruses that significantly contribute to the development of various human cancers, such as Burkitt's lymphoma, nasopharyngeal carcinoma, Hodgkin's lymphoma, Kaposi's sarcoma, and primary effusion lymphoma. Oncogenesis triggered by γ-herpesviruses involves complex interactions between viral genetics, host cellular mechanisms, and immune evasion strategies. At the genetic level, crucial viral oncogenes participate in the disruption of cell signaling, leading to uncontrolled proliferation and inhibition of apoptosis.
View Article and Find Full Text PDFViruses
December 2024
W. Harry Feinstone Department of Molecular Microbiology and Immunology, Johns Hopkins Bloomberg School of Public Health, Baltimore, MD 21205, USA.
Chikungunya virus (CHIKV) is an emerging, mosquito-borne arthritic alphavirus increasingly associated with severe neurological sequelae and long-term morbidity. However, there is limited understanding of the crucial host components involved in CHIKV replicase assembly complex formation, and thus virus replication and virulence-determining factors, within the central nervous system (CNS). Furthermore, the majority of CHIKV CNS studies focus on neuronal infection, even though astrocytes represent the main cerebral target.
View Article and Find Full Text PDFViruses
December 2024
Foreign Animal Disease Research Unit, Plum Island Animal Disease Center (PIADC), Agricultural Research Service, U.S. Department of Agriculture, P.O. Box 848, Greenport, NY 11944, USA.
African swine fever (ASF) is a lethal disease of domestic pigs that is currently challenging swine production in large areas of Eurasia. The causative agent, ASF virus (ASFV), is a large, double-stranded and structurally complex virus. The ASFV genome encodes for more than 160 proteins; however, the functions of most of these proteins are still in the process of being characterized.
View Article and Find Full Text PDFViruses
December 2024
Department of Infectious Diseases, Institute of Biomedicine, Sahlgrenska Academy, University of Gothenburg, 413 46 Gothenburg, Sweden.
The tick-borne encephalitis virus is a pathogen endemic to northern Europe and Asia, transmitted through bites from infected ticks. It is a member of the family and possesses a positive-sense, single-stranded RNA genome encoding a polypeptide that is processed into seven non-structural and three structural proteins, including the envelope (E) protein. The glycosylation of the E protein, involving a single N-linked glycan at position N154, plays a critical role in viral infectivity and pathogenesis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!