The phytosynthesis of metal oxides nanoparticles (NPs) has been extensively reported; yet mechanism involved and incorporated bioactive compounds in the synthesized NPs are still need to be investigated. In this regard, here an efficient sustainable co-precipitation synthesis of zinc oxide nanoparticles (ZnO NPs) has been developed, employing hydrothermal reactions, using organic compounds of leaves. Pure hexagonal wurtzite ZnO was identified by X-ray diffraction and NPs in the size range of 50-60 nm were observed by field emission scanning electron microscopy. X-ray photoelectron spectroscopy revealed surface modification of ZnO by functional groups associated with the incorporated bio active compounds of . The phyto-functionalized ZnO NPs having anoptical direct band gap of 3.29 eV and optical band gap energy of 2.85 eV were evaluated by cyclic voltammetry at various scan rates, galvanostatic charge-discharge at a range of current densities and electrochemical impedance spectroscopy (Z' vs. Z″ and Z vs. frequency) in aqueous electrolyte. The fabricated ZnO-based electrode revealed a specific capacitance of 86.5 F/g at 2 mV/s with 97% coulombic efficiency for 2000 cycles. The good electrochemical conductivity was demonstrated by lower internal resistance of 1.04 Ω. Therefore, the present study suggested the significant potential of organic compounds incorporated ZnO NPs towards supercapacitor.

Download full-text PDF

Source
http://dx.doi.org/10.1080/09593330.2020.1797899DOI Listing

Publication Analysis

Top Keywords

zno nps
12
organic compounds
8
band gap
8
zno
6
nps
6
sustainable synthesis
4
synthesis organic
4
organic framework-derived
4
framework-derived zno
4
zno nanoparticles
4

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!