Molecular force probes that generate optical responses to critical levels of mechanical stress (mechanochromophores) are increasingly attractive tools for identifying molecular sites that are most prone to failure. Here, a coumarin dimer mechanophore whose mechanical strength is comparable to that of the sulfur-sulfur bonds found in vulcanized rubbers is reported. It is further shown that the strain-induced scission of the coumarin dimer within the matrix of a particle-reinforced polybutadiene-based co-polymer can be detected and quantified by fluorescence spectroscopy, when cylinders of the nanocomposite are subjected to unconstrained uniaxial stress. The extent of the scission suggests that the coumarin dimers are molecular "weak links" within the matrix, and, by analogy, sulfur bridges are likely to be the same in vulcanized rubbers. The mechanophore is embedded in polymer main chains, grafting agent, and cross-linker positions in a polymer composite in order to generate experimental data to understand how macroscopic mechanical stress is transferred at the molecular scale especially in highly entangled cross-linked polymer nanocomposite. Finally, the extent of activation is enhanced by approximately an order of magnitude by changing the regiochemistry and stereochemistry of the coumarin dimer and embedding the mechanophore at the heterointerface of the particle-reinforced elastomer.

Download full-text PDF

Source
http://dx.doi.org/10.1002/marc.202000359DOI Listing

Publication Analysis

Top Keywords

coumarin dimer
16
dimer mechanophore
8
mechanical stress
8
vulcanized rubbers
8
molecular
5
coumarin
5
molecular damage
4
damage detection
4
detection elastomer
4
elastomer nanocomposite
4

Similar Publications

Constructing Strong and Tough Polymer Elastomers via Photoreversible Coumarin Dimer Mechanophores.

ACS Appl Mater Interfaces

January 2025

National Engineering Laboratory for Clean Technology of Leather Manufacture, College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, P.R. China.

Advanced elastomers with outstanding strength, toughness, and reusability hold significant potential for diverse applications. Using photochemistry and mechanochemistry to develop such materials has become a very effective strategy. Here, we report that photoreversible coumarin-based mechanophores that can make force-/light-triggered cycloreversion are chemically incorporated into polyurethane elastomers to simultaneously enhance their strength and toughness.

View Article and Find Full Text PDF

ConspectusSynthetic extracellular matrix (ECM) engineering is a highly interdisciplinary field integrating materials and polymer science and engineering, chemistry, cell biology, and medicine to develop innovative strategies to investigate and control cell-matrix interactions. Cellular microenvironments are complex and highly dynamic, changing in response to injury and disease. To capture some of these critical dynamics , biomaterial matrices have been developed with tailorable properties that can be modulated in the presence of cells.

View Article and Find Full Text PDF

Kinetic stabilization of amyloidogenic immunoglobulin light chains (LCs) through small molecule binding may become the first treatment for the proteinopathy component of light chain amyloidosis (AL). Kinetic stabilizers selectively bind to the native state over the misfolding transition state, slowing denaturation. Prior λ full-length LC dimer (FL LC) kinetic stabilizers exhibited considerable plasma protein binding.

View Article and Find Full Text PDF

Structural and catalytic properties of histidyl-tRNA synthetase: A potential drug target against leishmaniasis.

Int J Biol Macromol

December 2024

Department of Biotechnology & Bioinformatics, School of Life Sciences, University of Hyderabad, Prof. C.R. Rao Road, Hyderabad 500046, India. Electronic address:

Article Synopsis
  • Visceral leishmaniasis, caused by Leishmania donovani, primarily affects underprivileged communities and lacks effective treatment options.
  • The study focuses on LdHisRS, an enzyme from the parasite, revealing its unique structural features and differences from human counterparts that might be exploited for drug development.
  • Comp-7m, a specific inhibitor of LdHisRS, shows promise in blocking the enzyme's activity, potentially leading to new treatments for leishmaniasis through insights gained from its structure and function.
View Article and Find Full Text PDF

Identification of Oral Bioavailable Coumarin Derivatives as Potential AR Antagonists Targeting Prostate Cancer.

J Med Chem

November 2024

State Key Laboratory of Advanced Drug Delivery and Release Systems, College of Pharmaceutical Sciences, Zhejiang University, Hangzhou, Zhejiang 310058, China.

Androgen receptor (AR) is a crucial driver of prostate cancer (PCa), but acquired resistance to AR antagonists significantly undermines their clinical efficacy. We previously discovered coumarin derivative , which is capable of disrupting AR ligand-binding domain dimers, offering the potential for overcoming resistance. However, its poor oral bioavailability limited further development.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!