Palmitic acid (PA), the main component of dietary saturated fat, has been known to increase in patients with obesity, and PA-induced lipotoxicity may contribute to obesity-related male infertility. Melatonin has beneficial effects on reproductive processes; however, the effect and the underlying molecular mechanism of melatonin's involvement in PA-induced cytotoxicity in the testes are poorly understood. Our findings showed that lipotoxicity was observed in mouse testes after long-term PA treatment and that melatonin therapy restored spermatogenesis and fertility in these males. Moreover, melatonin therapy suppressed PA-induced apoptosis by modulating apoptosis-associated proteins such as Bcl2, Bax, C-Caspase3, C-Caspase12, and CHOP in type B spermatogonial stem cells. Changes in the expression of endoplasmic reticulum (ER) stress markers (p-IRE1, p-PERK, ATF4) and intracellular Ca levels showed that melatonin relieved PA-induced ER stress. Mechanistically, melatonin stimulated the expression and nuclear translocation of SIRT1 through its receptors and prevented PA-induced ROS production and mitochondrial dysfunction via SIRT1 signaling pathway. Furthermore, melatonin promoted SIRT1-mediated p53 deacetylation, thereby relieving G2/M arrest in response to PA-stimulated DNA damage. Collectively, these findings indicate that melatonin protects the testes from PA-induced lipotoxicity through the activation of SIRT1, which alleviates oxidative stress, ER stress, mitochondrial dysfunction, and DNA damage.

Download full-text PDF

Source
http://dx.doi.org/10.1111/jpi.12690DOI Listing

Publication Analysis

Top Keywords

dna damage
12
melatonin
8
melatonin protects
8
mouse testes
8
oxidative stress
8
pa-induced lipotoxicity
8
melatonin therapy
8
mitochondrial dysfunction
8
pa-induced
6
stress
5

Similar Publications

PsDMAP1/PsTIP60-regulated H4K16ac is required for ROS-dependent virulence adaptation of on host plants.

Proc Natl Acad Sci U S A

January 2025

Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing 100193, China.

Host plants and various fungicides inhibit plant pathogens by inducing the release of excessive reactive oxygen species (ROS) and causing DNA damage, either directly or indirectly leading to cell death. The mechanisms by which the oomycete manages ROS stress resulting from plant immune responses and fungicides remains unclear. This study elucidates the role of histone acetylation in ROS-induced DNA damage responses (DDR) to adapt to stress.

View Article and Find Full Text PDF

ANAC044 orchestrates mitochondrial stress signaling to trigger iron-induced stem cell death in root meristems.

Proc Natl Acad Sci U S A

January 2025

Ministry of Education Key Laboratory of Environment Remediation and Ecological Health, Zhejiang Provincial Key Laboratory of Agricultural Resources and Environment, College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, China.

While iron (Fe) is essential for life and plays important roles for almost all growth related processes, it can trigger cell death in both animals and plants. However, the underlying mechanisms for Fe-induced cell death in plants remain largely unknown. S-nitrosoglutathione reductase (GSNOR) has previously been reported to regulate nitric oxide homeostasis to prevent Fe-induced cell death within root meristems.

View Article and Find Full Text PDF

HCAR2 Modulates the Crosstalk between Mammary Epithelial Cells and Macrophages to Mitigate Staphylococcus aureus Infection in the Mouse Mammary Gland.

Adv Sci (Weinh)

January 2025

State Key Laboratory for Diagnosis and Treatment of Severe Zoonotic Infectious Diseases, Key Laboratory for Zoonosis Research of the Ministry of Education, Institute of Zoonosis, College of Veterinary Medicine, Jilin University, Changchun, Jilin, 130062, China.

Staphylococcus aureus (S. aureus) is a major zoonotic pathogen, with mammary gland infections contributing to mastitis, a condition that poses significant health risks to lactating women and adversely affects the dairy industry. Therefore, understanding the immune mechanisms underlying mammary infections caused by S.

View Article and Find Full Text PDF

ATRX mutation modifies the DNA damage response in glioblastoma multiforme tumor cells and enhances patient prognosis.

Medicine (Baltimore)

January 2025

Department of Anesthesiology, West China Second University Hospital, Sichuan University, Chengdu, Sichuan, P.R. China.

The presence of specific genetic mutations in patients with glioblastoma multiforme (GBM) is associated with improved survival outcomes. Disruption of the DNA damage response (DDR) pathway in tumor cells enhances the effectiveness of radiotherapy drugs, while increased mutational burden following tumor cell damage also facilitates the efficacy of immunotherapy. The ATRX gene, located on chromosome X, plays a crucial role in DDR.

View Article and Find Full Text PDF

Flap endonuclease 1 repairs DNA-protein cross-links via ADP-ribosylation-dependent mechanisms.

Sci Adv

January 2025

Developmental Therapeutics Branch, Center for Cancer Research, National Cancer Institute, National Institute of Health, Bethesda, MD 20892, USA.

DNA-protein cross-links (DPCs) are among the most detrimental genomic lesions. They are ubiquitously produced by formaldehyde (FA), and failure to repair FA-induced DPCs blocks chromatin-based processes, leading to neurodegeneration and cancer. The type, structure, and repair of FA-induced DPCs remain largely unknown.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!