Proteolytic processing is an important post-translational modification affecting protein activity and stability. In the current study, we investigate the N-terminal cleavage of Trop2, a protein which is overexpressed in many cancers. We demonstrate that Trop2 is cleaved at Arg87 by a transmembrane serine protease, matriptase. Homology modeling and site-directed mutagenesis of amino acids in close proximity to the matriptase cleavage site reveal the importance of Val194 in regulating Trop2 cleavage. Co-immunoprecipitation studies confirm that amino acid substitutions at Arg87, Thr88, Lys189, Val194, and His195 do not affect Trop2 dimerization. However, cleavage of wild-type Trop2 by matriptase is inhibited when it is allowed to dimerize with a V A mutant monomer, further confirming the role of Val194 in matriptase-mediated N-terminal cleavage.

Download full-text PDF

Source
http://dx.doi.org/10.1002/1873-3468.13899DOI Listing

Publication Analysis

Top Keywords

cleavage trop2
8
n-terminal cleavage
8
trop2
6
cleavage
5
proteolytic cleavage
4
trop2 arg87
4
arg87 mediated
4
matriptase
4
mediated matriptase
4
matriptase regulated
4

Similar Publications

Purpose: The antibody-drug conjugate (ADC) sacituzumab govitecan (SG) comprises the topoisomerase 1 (TOP1) inhibitor (TOP1i) SN-38, coupled to a monoclonal antibody targeting trophoblast cell surface antigen 2 (TROP-2). Poly(ADP-ribose) polymerase (PARP) inhibition may synergize with TOP1i and SG, but previous studies combining systemic PARP and TOP1 inhibitors failed due to dose-limiting myelosuppression. Here, we assess the proof-of-mechanism and clinical feasibility for SG and talazoparib (TZP) employing an innovative sequential dosing schedule.

View Article and Find Full Text PDF

The expression of trophoblast cell surface antigen-2 (Trop-2) is enhanced in many tumor tissues and is correlated with increased malignancy and poor survival of patients with cancer. Previously, we demonstrated that the Ser-322 residue of Trop-2 is phosphorylated by protein kinase Cα (PKCα) and PKCδ. Here, we demonstrate that phosphomimetic Trop-2 expressing cells have markedly decreased E-cadherin mRNA and protein levels.

View Article and Find Full Text PDF

Antibody drug conjugates (ADCs) combine the potent cytotoxicity of chemotherapy with the antigen -specific targeted approach of antibodies into one single molecule. Trophoblast cell surface antigen 2 (TROP-2) is a transmembrane glycoprotein involved in calcium signal transduction and is expressed in multiple tumor types. TROP-2 expression is higher in HER2-negative breast tumors (HR+/HR-) and is associated with worse survival.

View Article and Find Full Text PDF

Trop-2 is a transmembrane signal transducer that is overexpressed in most human cancers, and drives malignant progression. To gain knowledge on the higher-order molecular mechanisms that drive Trop-2 signaling, we applied next-generation sequencing, proteomics, and high-resolution microscopy to models and primary cases of human colorectal cancer (CRC). We had previously shown that Trop-2 induces a Ca signal.

View Article and Find Full Text PDF

Trophoblast antigen 2 (Trop2) is a type I transmembrane protein post-translationally modified by N-linked glycosylation. It was originally detected in trophoblasts but was later shown to be frequently overexpressed in many epithelial cancers. Recently, anti-Trop2 antibody-drug conjugate has been FDA approved for the treatment of metastatic triple-negative breast and urothelial carcinomas, making it an important tumor antigen.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!