Thermally insulating materials based on renewable nanomaterials such as nanocellulose could reduce the energy consumption and the environmental impact of the building sector. Recent reports of superinsulating cellulose nanomaterial (CNM)-based aerogels and foams with significantly better heat transport properties than the commercially dominating materials, such as expanded polystyrene, polyurethane foams, and glass wool, have resulted in a rapidly increasing research activity. Herein, the fundamental basis of thermal conductivity of porous materials is described, and the anisotropic heat transfer properties of CNMs and films with aligned CNMs and the processing and structure of novel CNM-based aerogels and foams with low thermal conductivities are presented and discussed. The extraordinarily low thermal conductivity of anisotropic porous architectures and multicomponent approaches are highlighted and related to the contributions of the Knudsen effect and phonon scattering.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC11468958 | PMC |
http://dx.doi.org/10.1002/adma.202001839 | DOI Listing |
Adv Mater
January 2025
Shanghai Key Laboratory of Electrical Insulation and Thermal Ageing, School of Chemistry and Chemical Engineering, Shanghai Jiao Tong University, Shanghai, 200240, China.
Achieving optimal capacitive energy storage performance necessitates the integration of high energy storage density, typical of ferroelectric dielectrics, with the low polarization loss associated with linear dielectrics. However, combining these characteristics in a single dielectric material is challenging due to the inherent contradictions between the spontaneous polarization of ferroelectric dielectrics and the adaptability of linear dielectrics to changes in the electric field. To address this issue, a linear isotactic sulfonylated polynorbornene dielectric characterized by ferroelectric-like crystals has been developed.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
School of Mechanics and Aerospace Engineering, Dalian University of Technology, Dalian 116024, P. R. China.
Ceramic aerogels are promising high-temperature thermal insulation materials due to their outstanding thermal stability and oxidation resistance. However, restricted by nanoparticle-assembled network structures, conventional ceramic aerogels commonly suffer from inherent brittleness, volume shrinkage, and structural collapse at high temperatures. Here, to overcome such obstacles, 3D ultralight and highly porous carbon tube foams (CTFs) were designed and synthesized as the carbonaceous precursors, where melamine foams were used as the sacrificial templates to form the hollow and thin-wall network structures in the CTFs (density: ∼4.
View Article and Find Full Text PDFAdv Sci (Weinh)
January 2025
Department of Mechanical and Automation Engineering, Chinese University of Hong Kong, Sha Tin, Hong Kong, 999077, China.
Lattice metamaterials emerge as advanced architected materials with superior physical properties and significant potential for lightweight applications. Recent developments in additive manufacturing (AM) techniques facilitate the manufacturing of lattice metamaterials with intricate microarchitectures and promote their applications in multi-physical scenarios. Previous reviews on lattice metamaterials have largely focused on a specific/single physical field, with limited discussion on their multi-physical properties, interaction mechanisms, and multifunctional applications.
View Article and Find Full Text PDFAngew Chem Int Ed Engl
January 2025
Northwestern Polytechnical University, School of Chemistry and Chemical Engineering, CHINA.
The increasing power and integration of electronic devices have intensified serious heat accumulation, driving the demand for higher intrinsic thermal conductivity in thermal interface materials, such as polydimethylsiloxane (PDMS). Grafting mesogens onto PDMS can enhance its intrinsic thermal conductivity. However, the high stability of the PDMS chain limits the grafting density of mesogens, restricting the improvement in thermal conductivity.
View Article and Find Full Text PDFNanoscale
January 2025
School of Chemistry and Chemical Engineering, Nanjing University of Science and Technology, Nanjing 210094, China.
Ammonium perchlorate (AP) is widely utilized in aerospace, defense and other fields due to its high energy density, exceptional stability, easy availability and adaptability. However, the high sensitivity and hygroscopicity of AP severely constrain its application in numerous fields. In this study, a two-step continuous coating method was employed to construct AP-based energetic microcapsules with low sensitivity and hygroscopicity.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!