Aggregation-Induced Emission Luminogens Married to 2D Black Phosphorus Nanosheets for Highly Efficient Multimodal Theranostics.

Adv Mater

Department of Chemistry, Hong Kong Branch of Chinese National Engineering Research Center for Tissue Restoration and Reconstruction, The Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, 999077, China.

Published: September 2020

Inspired by the respective advantages of aggregation-induced emission (AIE)-active photosensitizers and black phosphorus nanomaterials in cancer treatment, the facile construction of novel AIE photosensitizers married to 2D black phosphorus nanosheets and their application for multimodal theranostics are demonstrated. The developed nanomaterial simultaneously possesses distinctive properties and multiple functions including excellent stability, good biocompatibility, intensive fluorescence emission in the NIR region, high-performance reactive oxygen species generation, good photothermal conversion efficiency, outstanding cellular uptake, and effective accumulation at the tumor site. Both in vitro and in vivo evaluation show that the presented nanotheranostic system is an excellent candidate for NIR fluorescence-photothermal dual imaging-guided synergistic photodynamic-photothermal therapies. This study thus not only extends the applications scope of AIE and black phosphorus materials, but also offers useful insights into designing a new generation of cancer theranostic protocol for potential clinical applications.

Download full-text PDF

Source
http://dx.doi.org/10.1002/adma.202003382DOI Listing

Publication Analysis

Top Keywords

black phosphorus
16
aggregation-induced emission
8
married black
8
phosphorus nanosheets
8
multimodal theranostics
8
emission luminogens
4
luminogens married
4
black
4
phosphorus
4
nanosheets highly
4

Similar Publications

Molybdenum blue colorimetry (MBC) is the dominant, well-established method used for determining total P in environmental media, including in organismal tissues. However, other elemental methods for P determination are available, including inductively coupled plasma mass spectrometry (ICP-MS). Given the extensive literature using MBC to determine P in organismal samples, it is important to assess P analyses by ICP-MS and MBC to ensure that the two methods produce comparable data.

View Article and Find Full Text PDF

Background: Protein-energy wasting (PEW), a unique weight loss linked to nutritional and metabolic abnormalities, is common in patients undergoing hemodialysis (HD) and associated with adverse outcomes. This study investigated whether extended-hours HD combined with a liberalized diet could overcome PEW and improve survival.

Methods: The body mass index (BMI) and survival outcomes in patients undergoing extended-hours HD were evaluated for up to 8 years using data from the LIBeralized diet Extended-houRs hemodialysis Therapy (LIBERTY) cohort.

View Article and Find Full Text PDF

Membrane bioreactors (MBRs) have been widely used in the field of wastewater treatment because of their small footprint and high treatment efficiency. In this research, 10 rural wastewater treatment sites in China that employ the MBR process were systematically studied. Specifically, treatment of actual domestic wastewater using MBRs was examined by high-throughput 16S rRNA gene sequencing to explore the microbial community composition and perform function prediction.

View Article and Find Full Text PDF

Terminal metal-phosphorus (M-P) complexes are of significant contemporary interest as potential platforms for P-atom transfer (PAT) chemistry. Decarbonylation of metal-phosphaethynolate (M-PCO) complexes has emerged as a general synthetic approach to terminal M-P complexes. M-P complexes that are stabilized by strong M-P multiple bonds are kinetically persistent and isolable.

View Article and Find Full Text PDF

PagSND1-B1 Regulates Wood Formation by Influencing Phosphorus Absorption and Distribution in Poplar.

Plant Cell Environ

January 2025

State Key Laboratory of Subtropical Silviculture, College of Forestry and Biotechnology, Zhejiang A&F University, Hangzhou, China.

In natural environments, the growth and development of trees are continuously affected by phosphorus (P) starvation stress. However, the mechanisms through which trees balance stem growth and P distribution remain unknown. This study found that in the woody model species poplar, the P loss in stems is more severe than that in roots and leaves under P starvation conditions, thereby inhibiting stem development and reducing the expression of numerous genes related to wood formation, including PagSND1-B1.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!