Mandibular biomechanical behavior of rats submitted to chronic intermittent or continuous hypoxia and periodontitis.

Sleep Breath

Cátedra de Fisiología, Facultad de Odontología, Universidad de Buenos Aires, M.T. de Alvear 2142, 3rd floor "A", Buenos Aires, Argentina.

Published: March 2021

Background: The aim of this study was to investigate the effects of exposure to continuous (CH) and intermittent (IH) hypoxia on biomechanical properties of the mandible and periodontal tissue of animals submitted to experimental periodontitis (EP) when applying loads in a hypoxic environment.

Methods: Adult female Wistar rats were exposed during 90 days to IH or CH (simulated high altitude of 4200 m above sea level). Fourteen days prior to the euthanasia, EP was induced to half of the animals of each group.

Results: Only in the rats with EP, IH decreased the maximum capacity of the mandible to withstand load and the limit of elastic load. Indicators of intrinsic properties of the bone material were significantly reduced by both types of hypoxia in rats with EP. Hypoxia enhanced the alveolar bone loss induced by EP in the buccal side of the mandible, without showing additional effects in lingual or interradicular bone. Hypoxia increased prostaglandin E content in gingival tissue of healthy animals and further elevated the E levels increased by EP.

Conclusions: When periodontitis is present, hypoxic stress induces a decrease in mineral properties that ultimately affects the ability of the mandible to resist load, mainly during intermittent exposure to hypoxia. These effects on bone may be related to the higher levels of prostaglandin E reached in the surrounding gingival tissue. The findings of this study may stimulate strategies to prevent unwanted effects of hypoxia on periodontal tissues.

Download full-text PDF

Source
http://dx.doi.org/10.1007/s11325-020-02158-2DOI Listing

Publication Analysis

Top Keywords

gingival tissue
8
hypoxia
7
mandibular biomechanical
4
biomechanical behavior
4
rats
4
behavior rats
4
rats submitted
4
submitted chronic
4
chronic intermittent
4
intermittent continuous
4

Similar Publications

Introduction: Soft-tissue defect is commonly seen in immediate maxillary posterior implantation because of tooth extraction wound and tension from bone graft. Bone graft materials exposure has a significant detrimental influence on bone augmentation. However, previous studies lack sufficient evidence to guide wound closure after immediate posterior implantation.

View Article and Find Full Text PDF

Objective:  Particulate matter 2.5 (PM2.5), an important air pollution particle, has been previously studied for its effects on various normal and cancer tissues.

View Article and Find Full Text PDF

Objectives:  Epithelial-mesenchymal transition (EMT) is a process that shifts cellular phenotype. It is linked to several different inflammatory diseases including periodontitis. This study was conducted to investigate the involvement of the EMT process in an experimental periodontitis (EP) model.

View Article and Find Full Text PDF

Salivary microbiota dysbiosis and elevated polyamine levels contribute to the severity of periodontal disease.

BMC Oral Health

January 2025

Department of Life Sciences, GITAM (Deemed to be University), GITAM School of Science, Visakhapatnam, Andhra Pradesh, 530 045, India.

Background: The oral cavity is a complex environment which harbours the second largest and most diverse microflora after the gastrointestinal tract. The bacteriome in the oral cavity plays a pivotal role in promoting the health and well-being of human beings. Gingivitis, an inflammation of the gingival tissue, arises due to plaque accumulation on the teeth, often leads to periodontitis.

View Article and Find Full Text PDF

Background: Periodontitis and diabetes are chronic diseases where inflammation plays a central role, with each condition exacerbating the other. Pyroptosis, an inflammatory form of programmed cell death, is implicated in periodontitis and diabetes. The activation of gasdermin D (GSDMD), a key mediator of pyroptosis, promotes cytokine release and perpetuates tissue destruction in both.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!