Context: Diagnosis of somatic dysfunction is based on subjective palpatory osteopathic assessments. This subjectivity has posed a challenge for researchers in studying osteopathic medicine. The development and use of radiological imaging techniques to objectively confirm or quantify muscle tissue stiffness associated with somatic dysfunction could be of benefit in osteopathic clinical practice, training, and further research.

Objectives: To investigate the feasibility of ultrasound shear wave elastography (SWE) to quantify muscle tissue stiffness in somatic dysfunction before and after osteopathic manipulative treatment (OMT).

Methods: In this prospective study, we assessed lumbar spine somatic dysfunction in 20 adult patients before and after a single OMT session using standard osteopathic palpatory assessments by osteopathic physician faculty members in the Department of Osteopathic Principle and Practice at Rocky Vista University College of Osteopathic Medicine (Utah campus). Shear wave velocity (SWV, m/s) was measured in lumbar paraspinal muscle tissue using a commercial ultrasonography scanner on all participants immediately before and after OMT. In this study, OMT techniques targeted the iliocostalis lumborum and included the articulatory technique, balanced ligamentous tension, facilitated positional release, high-velocity, low-amplitude technique, muscle energy, myofascial release, and the Still technique at the discretion of the osteopathic physician. The difference in SWV between muscle tissues with and without dysfunction, and differences in SWV of dysfunctional tissue before and after OMT were examined using unpaired and paired t tests, as appropriate. The correlation between SWV measurements and osteopathic assessments was examined by the Spearman rank correlation. Intra- and interobserver reliability was analyzed using intraclass correlation coefficient.

Results: The difference in SWV between muscle tissues with and without somatic dysfunction was significant before OMT (mean [SD], 1.93 [0.44] vs 1.69 [0.19]; P=.03) and was not significant after OMT (mean [SD], 1.69 [0.19] vs 1.53 [0.31]; P=.05). The difference in SWV in the same tissue with somatic dysfunction before and after OMT was significant (mean [SD], 1.93 [0.44] vs 1.52 [0.3]; P<.001). The SWV value highly correlated with manual osteopathic assessments (r=0.72). Intra- and interobserver reliability for performing SWE in somatic dysfunction was good (intraclass correlation coefficient >0.80).

Conclusions: The results of this study show that ultrasound SWE can objectively assess muscle tissue stiffness for diagnosis of somatic dysfunctions and for muscle tissue stiffness changes after OMT.

Download full-text PDF

Source
http://dx.doi.org/10.7556/jaoa.2020.108DOI Listing

Publication Analysis

Top Keywords

somatic dysfunction
28
muscle tissue
20
tissue stiffness
16
shear wave
12
difference swv
12
omt [sd]
12
osteopathic
10
ultrasound shear
8
wave elastography
8
tissue
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!