The social environment an individual is embedded in influences their ability and motivation to engage self-control processes, but little is known about the neural mechanisms underlying this effect. Many individuals successfully regulate their behavior even when they do not show strong activation in canonical self-control brain regions. Thus, individuals may rely on other resources to compensate, including daily experiences navigating and managing complex social relationships that likely bolster self-control processes. Here, we employed a network neuroscience approach to investigate the role of social context and social brain systems in facilitating self-control in adolescents. We measured brain activation using functional magnetic resonance imaging (fMRI) as 62 adolescents completed a Go/No-Go response inhibition task. We found that self-referential brain systems compensate for weaker activation in executive function brain systems, especially for adolescents with more friends and more communities in their social networks. Collectively, our results indicate a critical role for self-referential brain systems during the developmental trajectory of self-control throughout adolescence.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7543938 | PMC |
http://dx.doi.org/10.1093/scan/nsaa109 | DOI Listing |
Comput Biol Med
January 2025
Emerging Technologies Research Lab (ETRL), College of Computer Science and Information Systems, Najran University, Najran, 61441, Saudi Arabia; Department of Computer Science, College of Computer Science and Information Systems, Najran University, Najran, 61441, Saudi Arabia. Electronic address:
- Brain tumors (BT), both benign and malignant, pose a substantial impact on human health and need precise and early detection for successful treatment. Analysing magnetic resonance imaging (MRI) image is a common method for BT diagnosis and segmentation, yet misdiagnoses yield effective medical responses, impacting patient survival rates. Recent technological advancements have popularized deep learning-based medical image analysis, leveraging transfer learning to reuse pre-trained models for various applications.
View Article and Find Full Text PDFCell Rep
January 2025
Department of Neurological Surgery, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Neurology, Washington University School of Medicine, St. Louis, MO 63110, USA; Department of Genetics, Washington University School of Medicine, St. Louis, MO 63110, USA; The Brain Tumor Center, Siteman Cancer Center, Washington University School of Medicine, St. Louis, MO 63110, USA. Electronic address:
Mutation or deletion of the deubiquitinase USP7 causes Hao-Fountain syndrome (HAFOUS), which is characterized by speech delay, intellectual disability, and aggressive behavior and highlights important unknown roles of USP7 in the nervous system. Here, we conditionally delete USP7 in glutamatergic neurons in the mouse forebrain, triggering disease-relevant phenotypes, including sensorimotor deficits, impaired cognition, and aggressive behavior. Although USP7 deletion induces p53-dependent neuronal apoptosis, most behavioral abnormalities in USP7 conditional knockout mice persist following p53 loss.
View Article and Find Full Text PDFRes Child Adolesc Psychopathol
January 2025
School of Education and Counseling Psychology, Santa Clara University, Santa Clara, CA, USA.
Preschool-onset major depressive disorder (PO-MDD) is an impairing pediatric mental health disorder that impacts children as young as three years old. There is limited work dedicated to uncovering neural measures of this early childhood disorder which could be leveraged to further understand both treatment responsiveness and future depression risk. Event-related potentials (ERPs) such as the P300 have been employed extensively in adult populations to examine depression-related deficits in cognitive and motivational systems.
View Article and Find Full Text PDFInflamm Res
January 2025
Department of Pathology and Laboratory Medicine, Medical University of South Carolina, 173 Ashley Ave, Charleston, SC, 29425, USA.
Background: Sepsis-associated encephalopathy (SAE) often results from neuroinflammation. Recent studies have shown that brain platelet-derived growth factor receptor β (PDGFRβ) cells, including pericytes, may act as early sensors of infection by secreting monocyte chemoattractant protein-1 (MCP-1), which transmits inflammatory signals to the central nervous system. The erythroblast transformation-specific (ETS) transcription factor Friend leukemia virus integration 1 (Fli-1) plays a critical role in inflammation by regulating the expression of key cytokines, including MCP-1.
View Article and Find Full Text PDFJ Cereb Blood Flow Metab
January 2025
Departments of Neurology and Radiology, Massachusetts General Hospital and Harvard Medical School, Boston, USA.
Therapeutic drug development for central nervous system injuries, such as traumatic brain injury (TBI), presents significant challenges. TBI results in primary mechanical damage followed by secondary injury, leading to cognitive dysfunction and memory loss. Our recent study demonstrated the potential of carbon monoxide-releasing molecules (CORMs) to improve TBI recovery by enhancing neurogenesis.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!