Background: Attention and perception are strongly biased toward information about oneself compared to information about others. The self-attention network, an integrative theoretical framework for understanding the self-prioritization effects (SPE), proposes that the ventromedial prefrontal cortex (VMPFC), and the posterior superior temporal sulcus (pSTS) are the two nodes responsible for the preferential processing of self-related stimuli, which interact with the attentional control network (associated with the dorsolateral prefrontal cortex, DLPFC), responsible for processing other-related stimuli. So far, neuroimaging studies have provided considerable correlational evidence supporting the self-attention network.

Objective: Here we went beyond correlational evidence by manipulating cortical activity using high-definition transcranial direct current stimulation (HD-tDCS), a non-invasive brain stimulation method. We assessed whether anodal and cathodal stimulation of the VMPFC or the DLPFC modulates the processing of self- and other-related stimuli.

Methods: We used an associative unbiased learning procedure, the so-called shape-label matching task, to assess the SPE in a sample of = 90. We accomplished to overcome different methodological weaknesses of previous studies using different multichannel montages for excitatory and inhibitory effects over both the VMPFC and the DLPFC.

Results: We found no effect of shape association for non-matching pairs, whereas there was an effect of shape association in the matching condition. Performance (reaction times and accuracy) was better for the self association than for the other two associations, and performance for the friend association was better than for the stranger association. Thus, we replicated the SPE with behavioral data. At the neural level, none of the stimulation succeeded to modulate the magnitude of the SPE effect.

Conclusion: We discuss the implications of these findings, in particular why cognitive modeling theories about SPEs should favor an epiphenomenal rather than a causal link between VMPFC/DLPFC and the impact of personal significance stimuli on perception.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7371986PMC
http://dx.doi.org/10.3389/fnins.2020.00683DOI Listing

Publication Analysis

Top Keywords

prefrontal cortex
12
ventromedial prefrontal
8
self-attention network
8
correlational evidence
8
shape association
8
association
5
examining dorsolateral
4
dorsolateral ventromedial
4
cortex involvement
4
involvement self-attention
4

Similar Publications

Shaping the structural dynamics of motor learning through cueing during sleep.

Sleep

January 2025

UR2NF-Neuropsychology and Functional Neuroimaging Research Unit affiliated at CRCN - Centre for Research in Cognition and Neurosciences and UNI - ULB Neuroscience Institute, Université Libre de Bruxelles (ULB), Brussels, Belgium.

Enhancing the retention of recent memory traces through sleep reactivation is possible via Targeted Memory Reactivation (TMR), involving cueing learned material during post-training sleep. Evidence indicates detectable short-term microstructural changes in the brain within an hour after motor sequence learning, and post-training sleep is believed to contribute to the consolidation of these motor memories, potentially leading to enduring microstructural changes. In this study, we explored how TMR during post-training sleep affects performance gains and delayed microstructural remodeling, using both standard Diffusion Tensor Imaging (DTI) and advanced Neurite Orientation Dispersion & Density Imaging (NODDI).

View Article and Find Full Text PDF

The early prediction of Alzheimer's disease (AD) risk in healthy individuals remains a significant challenge. This study investigates the feasibility of task-state EEG signals for improving detection accuracy. Electroencephalogram (EEG) data were collected from the Multi-Source Interference Task (MSIT) and Sternberg Memory Task (STMT).

View Article and Find Full Text PDF

Neuroinflammatory Loop in Schizophrenia, Is There a Relationship with Symptoms or Cognition Decline?

Int J Mol Sci

January 2025

Departamento de Ciencias Biológicas y Químicas, Facultad De Medicina y Ciencia, Universidad San Sebastián, Sede Tres Pascualas Lientur 1457, Concepción 4080871, Chile.

Schizophrenia (SZ), a complex psychiatric disorder of neurodevelopment, is characterised by a range of symptoms, including hallucinations, delusions, social isolation and cognitive deterioration. One of the hypotheses that underlie SZ is related to inflammatory events which could be partly responsible for symptoms. However, it is unknown how inflammatory molecules can contribute to cognitive decline in SZ.

View Article and Find Full Text PDF

To elucidate the potential roles of presynaptic and postsynaptic serotonergic activity in impulsivity traits, we investigated the relationship between self-reported impulsiveness and serotonin transporter (5-HTT) and 5-HT2A receptors in healthy individuals. In this study, 26 participants completed 3-Tesla magnetic resonance imaging and positron emission tomography with [C]DASB and [C]MDL100907. To quantify 5-HTT and 5-HT2A receptor availability, the binding potential (BP) of [C]DASB and [C]MDL100907 was derived using the simplified reference tissue model with cerebellar gray matter as the reference region.

View Article and Find Full Text PDF

Background: Epidemiological and genetic studies have elucidated associations between antihypertensive medication and Alzheimer's disease (AD), with the directionality of these associations varying upon the specific class of antihypertensive agents.

Methods: Genetic instruments for the expression of antihypertensive drug target genes were identified using expression quantitative trait loci (eQTL) in blood, which are associated with systolic blood pressure (SBP). Exposure was derived from existing eQTL data in blood from the eQTLGen consortium and in the brain from the PsychENCODE and subsequently replicated in GTEx V8 and BrainMeta V2.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!