We provide a global, spatially explicit characterization of 47 terrestrial habitat types, as defined in the International Union for Conservation of Nature (IUCN) habitat classification scheme, which is widely used in ecological analyses, including for quantifying species' Area of Habitat. We produced this novel habitat map for the year 2015 by creating a global decision tree that intersects the best currently available global data on land cover, climate and land use. We independently validated the map using occurrence data for 828 species of vertebrates (35152 point plus 8181 polygonal occurrences) and 6026 sampling sites. Across datasets and mapped classes we found on average a balanced accuracy of 0.77 ([Formula: see text]0.14 SD) at Level 1 and 0.71 ([Formula: see text]0.15 SD) at Level 2, while noting potential issues of using occurrence records for validation. The maps broaden our understanding of habitats globally, assist in constructing area of habitat refinements and are relevant for broad-scale ecological studies and future IUCN Red List assessments. Periodic updates are planned as better or more recent data becomes available.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7406504 | PMC |
http://dx.doi.org/10.1038/s41597-020-00599-8 | DOI Listing |
Molecules
December 2024
Programa de Pós-Graduação em Ciências Aplicadas a Produtos para a Saúde, Laboratório de Inovação em Química e Tecnologia Farmacêutica, Faculdade de Farmácia, Universidade Federal Fluminense, Rua Doutor Mario Vianna, 523, Santa Rosa, Niterói 24241-000, RJ, Brazil.
This paper highlights the complexity and urgency of addressing plastic pollution, drawing attention to the environmental challenges posed by improperly discarded plastics. Petroleum-based plastic polymers, with their remarkable range of physical properties, have revolutionized industries worldwide. Their versatility-from flexible to rigid and hydrophilic to hydrophobic-has fueled an ever-growing demand.
View Article and Find Full Text PDFAnimals (Basel)
January 2025
Engineering of Mineral Resources, Materials and Environment Department, North University Centre of Baia Mare, Technical University of Cluj-Napoca, 430083 Baia Mare, Romania.
Heavy metal pollution has complex impacts on terrestrial ecosystems, affecting biodiversity, trophic relationships, species health, and the quality of natural resources. This study aims to validate a non-invasive method for detecting heavy metals (Cd, As, Zn, Cu, Cr) in micromammalian prey, which constitute the primary diet of the common genet (), a mesocarnivore sensitive to habitat degradation. By focusing on prey remains (hair and bones) rather than entire fecal samples, this approach leverages the genet's selective feeding habits to assess the bioaccumulation of contaminants in its preferred prey.
View Article and Find Full Text PDFAnimals (Basel)
January 2025
School of Life Sciences, Anhui University, Hefei 230601, China.
Establishing and managing nature reserves to mitigate wildlife habitat loss and fragmentation is challenging, particularly in the face of increasing human activity. To understand how wildlife coexists in environments affected by anthropogenic disturbances, we conducted a 19-month survey examining the Reeves's pheasant () and Koklass pheasant () in the Anhui Tianma National Nature Reserve, China. Previous studies of large terrestrial birds focused primarily on livestock impacts, with less attention given to other human activities.
View Article and Find Full Text PDFEnviron Res
January 2025
Institute of Land Engineering and Technology, Shaanxi Provincial Land Engineering Construction Group Co., Ltd., Xi'an 710075, China; Shaanxi Provincial Land Engineering Construction Group, Key Laboratory of Degraded and Unused Land Consolidation Engineering, Ministry of Natural Resources, Xi'an 710075, China.
Surface greenness alters regional water storage by regulating hydrological processes, thereby modulating water constraints on ecosystem functions and feeding back sustainability. In semi-arid regions, excessive revegetation may exacerbate regional water resource depletion, intensify water limitations on ecosystems, and threaten long-term sustainability. However, these changes have not been adequately assessed.
View Article and Find Full Text PDFCarbon Balance Manag
January 2025
North Carolina State University, Raleigh, NC, USA.
Forests have the potential to contribute significantly to global climate policy efforts through enhanced carbon sequestration and storage in terrestrial systems and wood products. Projections models simulate changes future in forest carbon fluxes under different environmental, economic, and policy conditions and can inform landowners and policymakers on how to best utilize global forests for mitigating climate change. However, forest carbon modeling frameworks are often developed and applied in a highly disciplinary manner, e.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!