Standard convolutional filters usually capture unnecessary overlap of features resulting in a waste of computational cost. In this paper, we aim to solve this problem by proposing a novel Learned Depthwise Separable Convolution (LdsConv) operation that is smart but has a strong capacity for learning. It integrates the pruning technique into the design of convolutional filters, formulated as a generic convolutional unit that can be used as a direct replacement of convolutions without any adjustments of the architecture. To show the effectiveness of the proposed method, experiments are carried out using the state-of-the-art convolutional neural networks (CNNs), including ResNet, DenseNet, SE-ResNet and MobileNet, respectively. The results show that by simply replacing the original convolution with LdsConv in these CNNs, it can achieve a significantly improved accuracy while reducing computational cost. For the case of ResNet50, the FLOPs can be reduced by 40.9%, meanwhile the accuracy on the associated ImageNet increases.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7435949 | PMC |
http://dx.doi.org/10.3390/s20154349 | DOI Listing |
Sensors (Basel)
December 2024
School of Computer and Information Engineering, Xinjiang Agricultural University, Urumqi 830052, China.
Reducing damage and missed harvest rates is essential for improving efficiency in unmanned cabbage harvesting. Accurate real-time segmentation of cabbage heads can significantly alleviate these issues and enhance overall harvesting performance. However, the complexity of the growing environment and the morphological variability of field-grown cabbage present major challenges to achieving precise segmentation.
View Article and Find Full Text PDFDiagnostics (Basel)
December 2024
School of Electronics, Electrical Engineering and Computer Science, Queen's University Belfast, Belfast BT9 5BN, UK.
: Age-related macular degeneration (AMD) is a significant cause of vision loss in older adults, often progressing without early noticeable symptoms. Deep learning (DL) models, particularly convolutional neural networks (CNNs), demonstrate potential in accurately diagnosing and classifying AMD using medical imaging technologies like optical coherence to-mography (OCT) scans. This study introduces a novel CNN-based DL method for AMD diagnosis, aiming to enhance computational efficiency and classification accuracy.
View Article and Find Full Text PDFNeural Netw
December 2024
Institute of Automation, Chinese Academy of Sciences, MAIS, Beijing, 100190, China; University of Chinese Academy of Sciences, Beijing, 101408, China.
In the rapidly evolving field of deep learning, Convolutional Neural Networks (CNNs) retain their unique strengths and applicability in processing grid-structured data such as images, despite the surge of Transformer architectures. This paper explores alternatives to the standard convolution, with the objective of augmenting its feature extraction prowess while maintaining a similar parameter count. We propose innovative solutions targeting depthwise separable convolution and standard convolution, culminating in our Multi-scale Progressive Inference Convolution (MPIC).
View Article and Find Full Text PDFSci Rep
January 2025
College of Information Science and Technology, Gansu Agricultural University, Lanzhou, 730070, China.
In modern agriculture, the proliferation of weeds in cotton fields poses a significant threat to the healthy growth and yield of crops. Therefore, efficient detection and control of cotton field weeds are of paramount importance. In recent years, deep learning models have shown great potential in the detection of cotton field weeds, achieving high-precision weed recognition.
View Article and Find Full Text PDF3D Print Addit Manuf
December 2024
Key Laboratory of Intelligent Manufacturing Technology (Shantou University), Ministry of Education, Shantou, China.
Cutting tools with orderly arranged diamond grits using additive manufacturing show better sharpness and longer service life than traditional diamond tools. A retractable needle jig with vacuum negative pressure was used to absorb and place grits in an orderly arranged manner. However, needle hole wear after a long service time could not promise complete grit adsorption forever.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!