Complexation of biopolymers with halloysite nanotubes (HNTs) can greatly affect their applicability as materials building blocks. Here we have performed a systematic investigation of fabrication of halloysite nanotubes complexes with nucleotides and genomic DNA. The binding of DNA and various nucleotide species (polyAU, UMP Na, ADP Na, dATP Na, AMP, uridine, ATP Mg) by halloysite nanotubes was tested using UV-spectroscopy. The study revealed that binding of different nucleotides to the nanoclay varied but was low both in the presence and absence of MgCl, while MgCl facilitated significantly the binding of longer molecules such as DNA and polyAU. Modification of the nanotubes with DNA and nucleotide species was further confirmed by measurements of ζ-potentials. DNA-Mg-modified nanotubes were characterized using transmission electron (TEM), atomic force (AFM) and hyperspectral microscopies. Thermogravimetric analysis corroborated the sorption of DNA by the nanotubes, and the presence of DNA on the nanotube surface was indicated by changes in the surface adhesion force measured by AFM. DNA bound by halloysite in the presence of MgCl could be partially released after addition of phosphate buffered saline. DNA binding and release from halloysite nanotubes was tested in the range of MgCl concentrations (10-100 mM). Even low MgCl concentrations significantly increased DNA sorption to halloysite, and the binding was leveled off at about 60 mM. DNA-Mg-modified halloysite nanotubes were used for obtaining a regular pattern on a glass surface by evaporation induced self-assembly process. The obtained spiral-like pattern was highly stable and resisted dissolution after water addition. Our results encompassing modification of non-toxic clay nanotubes with a natural polyanion DNA will find applications for construction of gene delivery vehicles and for halloysite self-assembly on various surfaces (such as skin or hair).
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7436255 | PMC |
http://dx.doi.org/10.3390/molecules25153557 | DOI Listing |
J Chromatogr B Analyt Technol Biomed Life Sci
January 2025
College of Life Science, Hebei Agricultural University, Baoding, Hebei 071001, China; Hebei Forage Microbial Technology Innovation Center, Baoding, Hebei 071001, China; Hebei Agriculture Waste Resource Utilization Engineering Research Center, Baoding, Hebei 071001, China. Electronic address:
s: This study aimed to prepare a new separation medium, silane coupling agent KH570- modified halloysite nanotube (MPS-HNT) monolithic column, with excellent separation performance for small molecular compounds and macromolecular proteins. This was prepared using the principle of redox polymerization with modified HNTs as monomers. The optimal monomer proportion was obtained by optimizing the ratio of monomer, cross-linker, and pore-forming agent, which was evaluated using scanning electron microscopy, nitrogen adsorption, and mercury intrusion.
View Article and Find Full Text PDFACS Appl Mater Interfaces
January 2025
Research Center of Resource Chemistry and Energy Materials, Key Laboratory of Clay Mineral of Gansu, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, P.R. China.
Clay minerals show significant potential as fillers in polymer composite solid electrolytes (CSEs), whereas the influence of their microstructures on lithium-ion (Li) transport properties remains insufficiently understood. Herein, we design advanced poly(ethylene oxide) (PEO)-based CSEs incorporating clay minerals with diverse microstructures including 1D halloysite nanotubes, 2D Laponite (Lap) nanosheets, and 3D porous diatomite. These minerals form distinct Li transport pathways at the clay-PEO interfaces due to their varied structural configurations.
View Article and Find Full Text PDFPolymers (Basel)
December 2024
Department of Biomedical Sciences and Comprehensive Care, Indiana University School of Dentistry, Indianapolis, IN 46202, USA.
Matrix metalloproteinase (MMP)-induced collagen degradation at the resin-dentin interface remains a significant challenge for maintaining the longevity of dental restorations. This study investigated the effects of epigallocatechin-3-gallate (EGCG), a potent MMP inhibitor, on dental adhesive curing efficiency when encapsulated in halloysite nanotubes (HNTs). EGCG-loaded HNTs were incorporated into a commercial dental adhesive (Adper Scotchbond Multi-Purpose) at 7.
View Article and Find Full Text PDFTurk J Chem
November 2024
School of Chemical and Blasting Engineering, Anhui University of Science and Technology, Huainan, P.R. China.
The development of ultraviolet (UV) shielding materials is of great importance to protect human health and prevent the degradation of organic matter. However, the synthesis of highly efficient UV shielding polymer nanocomposites is currently limited by the agglomeration of inorganic anti-UV nanoparticles (NPs) within the polymer matrix and the limited absorption spectrum of UV shielding agents. In this study, highly effective manganese doped carbon quantum dots@halloysite nanotube composites (Mn-CDs@HNTs/PAS) were successfully synthesized by loading manganese-doped carbon quantum dots (Mn-CDs) into UV shielding effective halloysite nanotubes (HNTs) via the solvothermal method, followed by polymerization modification (PAS).
View Article and Find Full Text PDFSci Rep
January 2025
Catalysts and Organic Synthesis Research Laboratory, Department of Chemistry, Iran University of Science and Technology, Tehran, 16846-13114, Iran.
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!