The estimation of soil phosphorus is essential for agricultural activity. The laboratory chemical analysis techniques are expensive and labor-intensive. In the last decade, near-infrared spectroscopy has been become used as an alternative for soil attributes analysis. It is a rapid technique, and inexpensive relatively. However, this technique requires a calibration step using different machine learning and chemometrics tools. This study aims to develop predictive models for total soil phosphorus and extractable phosphorus by the Olson method (P-Olson) using three regression methods, namely partial least squares (PLS), regression support vector machine (RSVM) and backward propagation neural network (BPNN), combined with a proposed variable selection algorithm (PARtest) and a genetic algorithm PLS (GA-PAS). Also, it aims to investigate the effect of the texture on the accuracy of the prediction. The results show that PARtest combined with PBNN outperform the other used algorithms with an R = 0.86, RMSE = 1104 mg kg, and RPD = 3.23 for the TP. For P-Olson the RSVM coupled with GA-PLS outperforms all other methods with an R = 0.77, RMSE = 20.09 mg kg, and RPD = 1.90. The use of hierarchical ascendant clustering (HAC) helps to reduce the heterogeneity of soil and helps to increase the quality of prediction. The obtained results show that the models for clayey and loamy soils yielded an excellent prediction quality with an Rt = 0.88, RMSEt = 857.33 mg kg, and RPD = 4.10 using BPNN with PARtest for TP. Furthermore, an R = 0.83 RMSE = 8.30 mg kg, RPD = 11.00 3.11using RSVM with GA-PLS for P-Olson. Thus, the texture has a significant effect on the prediction accuracy.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.saa.2020.118736 | DOI Listing |
BMC Plant Biol
January 2025
Department of Soil Science, University of Tehran, Tehran, Iran.
Soil compaction is a pressing issue in agriculture that significantly hinders plant growth and soil health, necessitating effective strategies for mitigation. This study examined the effects of sugarcane bagasse, both in its raw form and as biochar, along with biological activators (Bacillus simplex UTT1 and Phanerochaete chrysosporium) on soil characteristics and corn (Zea mays L.) plant biomass in a compacted soil.
View Article and Find Full Text PDFBMC Plant Biol
January 2025
Center for Eco-Environment Restoration of Hainan Province, School of Ecology, Hainan University, Haikou, 570228, China.
Drought has a significant impact on ecosystem functions, especially on the biogeochemical cycling of phosphorus (P), which is a crucial nutrient for plant growth and productivity. Despite its importance, the effects of different drought scenarios on soil P cycling and availability remain poorly understood in previous studies. This study simulated drought conditions in tropical soils using maize as a test crop under varying field capacity (FC) levels (100%, 80%, 60%, 40%, and 20%) over a 60-day pot experiment.
View Article and Find Full Text PDFSci Rep
January 2025
College of Civil Engineering, Liaoning Technical University, Fuxin, 123000, P. R. China.
Aeolian sandy soil is barren and readily leads to low fertilizer utilization rates and yields. Therefore, it is imperative to improve the water and fertilizer retention capacity of these soils. In this paper, three kinds of biochar (rice husk, corn stalk, and bamboo charcoal) and bentonite were used as amendments in the first year of the experiment.
View Article and Find Full Text PDFSci Total Environ
January 2025
Queensland Alliance for Agriculture and Food Innovation, The University of Queensland, St. Lucia 4072, QLD, Australia.
The role of biochar in reducing greenhouse gas (GHG) emissions and improving soil health is a topic of extensive research, yet its effects remain debated. Conflicting evidence exists regarding biochar's impact on soil microbial-mediated emissions with respect to different GHGs. This study systematically examines these divergent perspectives, aiming to investigate biochar's influence on GHG emissions and soil health in agricultural soils.
View Article and Find Full Text PDFWater Res
December 2024
Key Laboratory of Poyang Lake Environment and Resource Utilization, Engineering Research Center of Watershed Carbon Neutralization, Ministry of Education, School of Resource and Environment, Nanchang University, Nanchang 330031, China. Electronic address:
To effectively mitigate global eutrophication in lakes, regulating sedimentary phosphorus release remains a primary strategy. Enhancing the adsorption and stabilization performance of passivating agents is integral to addressing endogenous phosphorus pollution in aquatic systems. This study presents a novel aerogel with a high specific surface area (663.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!