AI Article Synopsis

Article Abstract

Flash flooding is the natural hazard provoking the largest number of casualties, so adequately characterizing vulnerability is key to improve flood risk analysis and management. Developing composite indices is the most widely used methodology in vulnerability analysis. However, very few studies have so far assessed vulnerability in urban areas prone to flash flooding and the resulting research presents two main drawbacks: i) a fragmented approach is often pursued, i.e. without jointly considering the vulnerability components (exposure, sensitivity and resilience) and the two most influential dimensions in urban environments (social and economic); and ii) vulnerability indices are not usually validated because an ancillary dataset is not generally available and flash flooding events do not happen simultaneously in all urban areas of a particular region. Considering the above gaps, this paper describes the construction of an Integrated Socio-Economic Vulnerability Index (ISEVI) at the regional scale, which considers all vulnerability components and social and economic dimensions. ISEVI was subsequently validated through an uncertainty and sensitivity analysis using the Monte Carlo method. Further, regional spatial patterns of vulnerability were identified implementing a Latent Class Cluster Analysis. Uncertainty analysis reveals the high stability of vulnerability categories of the ISEVI and sensitivity analysis shows that the type and the conservation state of buildings are the vulnerability factors that cause a greater variability in ISEVI scores. The method deployed here may allow specific strategies for vulnerability reduction to be developed based on disaggregating the validated ISEVI into dimensions and components and using the regional spatial patterns characterized.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2020.140905DOI Listing

Publication Analysis

Top Keywords

flash flooding
16
vulnerability
12
urban areas
12
integrated socio-economic
8
socio-economic vulnerability
8
regional scale
8
areas prone
8
prone flash
8
vulnerability components
8
social economic
8

Similar Publications

Soil erosion susceptibility maps and raster dataset for the hydrological basins of North Africa.

Sci Data

January 2025

University of Southern California, Viterbi School of Engineering, 3737 Watt Way, Powell Hall of Engineering, Los Angeles, CA, 90089, USA.

Soil erosion in North Africa modulates agricultural and urban developments as well as the impacts of flash floods. Existing investigations and associated datasets are mainly performed in localized urban areas, often representing a limited part of a watershed. The above compromises the implementation of mitigation measures for this vast area under accentuating extremes and continuous hydroclimatic fluctuations.

View Article and Find Full Text PDF

Interpretable flash flood susceptibility mapping in Yarlung Tsangpo River Basin using H2O Auto-ML.

Sci Rep

January 2025

Key Laboratory of Water Cycle and Related Land Surface Processes, Institute of Geographic Sciences and Natural Resources Research (IGSNRR), Chinese Academy of Sciences (CAS), Beijing, 100101, China.

Flash flood susceptibility mapping is essential for identifying areas prone to flooding events and aiding decision-makers in formulating effective prevention measures. This study aims to evaluate the flash flood susceptibility in the Yarlung Tsangpo River Basin (YTRB) using multiple machine learning (ML) models facilitated by the H2O automated ML platform. The best-performing model was used to generate a flash flood susceptibility map, and its interpretability was analyzed using the Shapley Additive Explanations (SHAP) tree interpretation method.

View Article and Find Full Text PDF

Historical trends of metals and metalloids into lake and coastal sediments of Halong Bay (Vietnam).

Mar Pollut Bull

December 2024

Aix Marseille University, Université de Toulon, CNRS, IRD, MIO UM110, 13288 Marseille, France; Department Water-Environment-Oceanography, University of Science and Technology of Hanoi (USTH), Vietnamese Academy of Science and Technology (VAST), 18 Hoang Quoc Viet, Hanoi 100000, Viet Nam; IRD, Chulalongkorn University, 254 Henri Dunant Road, Pathumwan, 10330 Bangkok, Thailand.

Article Synopsis
  • Halong Bay in northern Vietnam is experiencing significant environmental impact from human activities, specifically from metals and metalloids used as indicators for tracing anthropogenic contributions.
  • Two sediment cores, one from coastal waters and another from a small isolated lake, revealed that the coastal site (HL) had a much higher accumulation rate than the lake site (HT).
  • Key findings indicate that the coastal waters are heavily influenced by the Red River drainage, with particular historical pollution spikes linked to significant events like the Indochina War and various regional flooding incidents.
View Article and Find Full Text PDF

The Himalayas experiences several cloudburst events due to its varied physiographical, geomorphological, and geological conditions and high rainfall. Uttarakhand is one of the Indian states circumscribed by the Himalayan ranges and has experienced a rise in the number of cloudburst catastrophes in the last few decades. These events cause substantial loss of life and property; however, very few studies have characterized these unpredictable cloudburst-induced flash floods in different regions of Uttarakhand.

View Article and Find Full Text PDF

Objectives: Hurricane Ida delivered record rainfall to the northeast, resulting in 11 deaths in New York City. We review these deaths, identify risk factors, and discuss solutions to prevent recurrence.

Methods: Deaths were confirmed by multiple sources.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!