A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3122
Function: getPubMedXML

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

GPRC5A reduction contributes to pollutant benzo[a]pyrene injury via aggravating murine fibrosis, leading to poor prognosis of IIP patients. | LitMetric

Air pollution exposure is recently reported to be one of the drivers of exacerbation in idiopathic pulmonary fibrosis (IPF). But there was a lack of direct evidence between pollution and lung fibrosis. Here, our data show effects of pollutant benzo[a]pyrene (BaP) and protein G-protein-coupled receptor family C group 5 type A (GPRC5A) on pulmonary fibrosis, which might help limit potential pollutant injury and disease progression. We cross-referenced epithelial differentially-expressed-genes (DEGs) from pollutant injury and published experimental fibrosis and IPF patients' data, top common-DEG (CO-DEG) GPRC5A was identified as a potential link between exposure-damage and fibrogenesis. The role of GPRC5A was evaluated under BaP exposure, in idiopathic interstitial pneumonia (IIP) tissue-array and via CRISPR/Cas9 knockout mice (Gprc5a). BaP exposure enhanced bleomycin (BLM)-induced murine pulmonary fibrosis with increased Fibronectin and α-SMA expression in primary fibroblasts, thickened respiratory membrane and damaged alveolar type II cell, combined with Gprc5a decline in fibrotic mass. GPRC5A mRNA reduced after 10-14 days' BaP exposure in human epithelial cell A549. GPRC5A protein was further found to decrease in IIP epithelium, especially hyperplastic regions. A high epithelial GPRC5A expression score was positively associated with long survival time (R = 0.34) while negatively with high age (R = -0.4) and IIP type IPF (R = -0.5). Low GPRC5A expression predicts poor prognosis (HR = 4.5). Gprc5a depletion aggravated mortality rate (50%) with increased collagen deposition and myofibroblast activation under BLM treatment and exacerbated BaP injury in lung remodeling. Vitamin metabolic imbalance and Mitofusion2 (Mfn2) or Opa1-regulated mitochondrial dynamics were deduced to contribute to Gprc5a depletion and fibrogenesis. Pollutant BaP exposure worsens murine fibrosis and myofibroblast activation via GPRC5A reduction in the damaged epithelium. GPRC5A deficiency was first confirmed to contribute to both poor prognosis of IIP patients and fibrogenesis in murine model; thus, GPRC5A could serve as a novel therapeutic target in pollutant injury and pulmonary fibrosis.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2020.139923DOI Listing

Publication Analysis

Top Keywords

pulmonary fibrosis
16
bap exposure
16
gprc5a
15
poor prognosis
12
pollutant injury
12
gprc5a reduction
8
pollutant benzo[a]pyrene
8
fibrosis
8
murine fibrosis
8
prognosis iip
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!