A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Cytotoxicity of hexabromocyclododecane, 1,2-dibromo-4-(1,2-dibromoethyl) cyclohexane and 1,2,5,6-tetrabromocyclooctane in human SH-SY5Y neuroblastoma cells. | LitMetric

Cytotoxicity of hexabromocyclododecane, 1,2-dibromo-4-(1,2-dibromoethyl) cyclohexane and 1,2,5,6-tetrabromocyclooctane in human SH-SY5Y neuroblastoma cells.

Sci Total Environ

State Key Laboratory of Environmental Chemistry and Ecotoxicology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China; University of Chinese Academy of Sciences, Beijing 100049, China.

Published: October 2020

With the listing of the of cycloaliphatic brominated flame retardants (CBFR) hexabromocyclododecane (HBCD) as a persistent organic pollutant (POP) by the Stockholm Convention, much attention has been paid to the environmental behaviors and biological effects of HBCD, as well as its potential alternatives, such as 1,2-dibromo-4-(1,2-dibromoethyl) cyclohexane (TBECH) and 1,2,5,6-tetrabromocyclooctane (TBCO). In this study, the neurotoxicity of HBCD, TBECH, and TBCO in human SH-SY5Y cells were compared. The results showed that HBCD, TBECH, and TBCO induced cytotoxicity, including dose-dependent cell viability decreases, cell membrane permeability increases, cytoskeleton development damage, and apoptosis induction, with the cytotoxicity in the order of HBCD > TBCO > TBECH. The expression levels of apoptotic proteins (caspase-3, Bax, caspase-9, Bcl-2, and cytochrome c (Cyt c)) followed the same order, which indicated that mitochondrial apoptotic pathway may be one of the mechanisms responsible for their neurotoxicity. In order to study the mechanisms of cytotoxicity, CBFRs-induced reactive oxygen species (ROS) and the intracellular calcium levels were determined. The ROS levels were significantly elevated for three CBFRs treatment, suggesting that oxidative stress contributes to their cytotoxicity. The intracellular calcium concentrations were significantly enhanced for HBCD and TBCO treatment, but not for TBECH, indicating that in addition to ROS, cytotoxicity of HBCD and TBCO may follow Ca-mediated apoptotic pathway. This study first compared the neurotoxicity of different CBFRs, providing valuable information for their risk assessment.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.scitotenv.2020.139650DOI Listing

Publication Analysis

Top Keywords

hbcd tbco
12
12-dibromo-4-12-dibromoethyl cyclohexane
8
human sh-sy5y
8
hbcd tbech
8
tbech tbco
8
apoptotic pathway
8
intracellular calcium
8
hbcd
7
cytotoxicity
6
tbco
6

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!