Exploring reductive degradation of fluorinated pharmaceuticals using AlO-supported Pt-group metallic catalysts: Catalytic reactivity, reaction pathways, and toxicity assessment.

Water Res

Department of Civil and Environmental Engineering and Institute of Construction and Environmental Engineering, Seoul National University, 35-402, 1 Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea. Electronic address:

Published: October 2020

Recently, an increasing number of pharmaceutical compounds has become fluorinated. Owing to their pharmacological efficacy, the use of these fluorinated pharmaceuticals continues to grow, and they constitute 20% of the drugs on the current market. However, only a few studies have investigated the fate and transformation of these emerging contaminants in natural and engineered aquatic environments. In the present study, the H-based reductive transformation of three fluorinated pharmaceutical compounds (levofloxacin, sitagliptin, and fluoxetine) were investigated using alumina-supported monometallic and bimetallic catalysts of the Pt-group noble metals (i.e., Ru, Rh, Pd, and Pt) under ambient temperature and pressure conditions. Degradation of all three compounds was observed with catalytic reactivity ranging from 4.0  ×  10 to 2.14  ×  10 L/(min·g), in which fluoxetine generally showed the highest reactivity, followed by sitagliptin and levofloxacin. The fluorination yields and transformation products were characterized for each fluorinated compound and three different degradation mechanisms were elucidated: 1) hydrodefluorination of C-F bond to CH bond, 2) hydrogenation of aromatic ring, and 3) reductive cleavage of CO bond from phenyl ether. Toxicity assessment using Aliivibrio fischeri showed there were no significant changes in toxicity over levofloxacin and sitagliptin degradation, suggesting the formation of no highly toxic by-products during catalytic reduction. For fluoxetine, an increased toxicity was observed during its degradation while ECOSAR-predicted toxicity values of all identified intermediates were lower than that of fluoxetine, suggesting the formation of unidentified secondary by-products that contribute to the overall toxicity. The study showed that catalytic reduction is a promising remediation process for treating and defluorinating the fluorinated pharmaceutical compounds.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.watres.2020.116242DOI Listing

Publication Analysis

Top Keywords

pharmaceutical compounds
12
fluorinated pharmaceuticals
8
catalytic reactivity
8
toxicity assessment
8
fluorinated pharmaceutical
8
levofloxacin sitagliptin
8
suggesting formation
8
catalytic reduction
8
fluorinated
6
toxicity
6

Similar Publications

Multidrug resistance (MDR) due to the overexpression of the P-glycoprotein (P-gp) efflux pump remains a significant challenge in cancer therapy, also in breast cancer. Traditional pharmacological approaches have focused on using inhibitors to modulate P-gp expression and function. Curcumin, a polyphenol derived from Curcuma longa L.

View Article and Find Full Text PDF

This study involved analyzing 76 sediment samples from the Persian Gulf and Oman Sea. The concentration of 18 prevalent PCB congeners was determined. Results indicated that the highest concentration of PCB-52, reaching 636.

View Article and Find Full Text PDF

Traditional Chinese medicine-based drug delivery systems for anti-tumor therapies.

Chin J Nat Med

December 2024

Affiliated Hospital of Integrated Traditional Chinese and Western Medicine, Nanjing University of Chinese Medicine, Nanjing 210028, China; Multi-component of Traditional Chinese Medicine and Microecology Research Center, Jiangsu Province Academy of Traditional Chinese Medicine, Nanjing 210028, China; Jiangsu Clinical Innovation Center of Digestive Cancer of Traditional Chinese Medicine, Nanjing 210028, China. Electronic address:

The treatment of tumors continues to be significantly challenging. The presence of multiple modalities, including surgery, radiation, chemotherapy and immunotherapy, the therapeutic outcomes remain limited and are often associated with adverse effects and inconsistent efficacy across cancer types. Recent studies have highlighted the potential of active components from traditional Chinese medicine (TCM) for their anti-cancer properties, which are attributable to multi-targeted mechanisms and broad pharmacological actions.

View Article and Find Full Text PDF

Glycyrrhizic acid-based multifunctional nanoplatform for tumor microenvironment regulation.

Chin J Nat Med

December 2024

State Key Laboratory of Southwestern Chinese Medicine Resources, Pharmacy School, Chengdu University of Traditional Chinese Medicine, Chengdu 611137, China. Electronic address:

Natural compounds demonstrate unique therapeutic advantages for cancer treatment, primarily through direct tumor suppression or interference with the tumor microenvironment (TME). Glycyrrhizic acid (GL), a bioactive ingredient derived from the medicinal herb Glycyrrhiza uralensis Fisch., and its sapogenin glycyrrhetinic acid (GA), have been recognized for their ability to inhibit angiogenesis and remodel the TME.

View Article and Find Full Text PDF

Despite the increasing interest in developing antimethanogenic additives to reduce enteric methane (CH) emissions and the extensive research conducted over the last decades, the global livestock industry has a very limited number of antimethanogenic feed additives (AMFA) available that can deliver substantial reduction, and they have generally not reached the market yet. This work provides technical recommendations and guidelines for conducting tests intended to screen the potential to reduce, directly or indirectly, enteric CH of compounds before they can be further assessed in in vivo conditions. The steps involved in this work cover the discovery, isolation, and identification of compounds capable of affecting CH production by rumen microbes, followed by in vitro laboratory testing of potential candidates.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!