Recently, zeolitic imidazolate framework-8 (ZIF8) and its derivatives have been applied in aqueous contaminant removal. Herein, three types of ZIF8@carbon nanotube (CNT) hybrids harvesting different pore structures and chemical bonding information are utilized for phosphate removal in the typical wastewater of activated sludge system (SW) and partial nitrification-denitrification treatment system (PND). Effluent organic matter (EfOM) is found to compete with phosphate for adsorption sites on adsorbents, resulting in reducing adsorptive capacities for phosphate, and the negative effect trend to become severer with increasing EfOM concentrations. Thus adverse impact are highly to be relieved by using ZIF8@CNT-2 (hybrids with CNT dosage of 120 mg) with novel structure design, the hybrid of which harvests the highest phosphate removal of 92.8-100%, the largest Partition coefficient (PC) of 9119.05 mg g μM with initial concentration of 0.96 mg L, pH independence in the range from 4 to 10. Analyses of the XPS characterization and first-principles calculations demonstrate the dominant interactions of Zn-O-P and H-bond during phosphate adsorption process by ZIF8@CNT hybrids. Such interactions are suppressed in presence of EfOM by weakening the above-stated binding energy at different adsorption sites according to first-principles simulation, resulting in declined phosphate adsorption capacity. In this regard, the less sensitivity to co-existing EfOM of ZIF8@CNT-2 may be due to the increased P=O, Zn-O-P and P-OH and the strengthened tolerance of nanostructure. These results suggest the promising enhanced phosphate removal in presence of EfOM could be obtained by specifically designing adsorbent structure.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1016/j.scitotenv.2020.141054 | DOI Listing |
Gels
January 2025
AIT-Austrian Institute of Technology, Giefinggasse 4, 1210 Vienna, Austria.
This review summarizes the fundamental concepts, recent advancements, and emerging trends in the field of stimuli-responsive hydrogels. While numerous reviews exist on this topic, the field continues to evolve dynamically, and certain research directions are often overlooked. To address this, we classify stimuli-responsive hydrogels based on their response mechanisms and provide an in-depth discussion of key properties and mechanisms, including swelling kinetics, mechanical properties, and biocompatibility/biodegradability.
View Article and Find Full Text PDFBiomimetics (Basel)
January 2025
Agroindustrial Research Group, Department of Chemical Engineering, Universidad Pontificia Bolivariana, Cq. 1 #70-01, Medellín 050031, Colombia.
Fibrous by-products, including defective or double cocoons, are obtained during silk processing. These cocoons primarily contain fibroin and sericin (SS) proteins along with minor amounts of wax and mineral salts. In conventional textile processes, SS is removed in the production of smooth, lustrous silk threads, and is typically discarded.
View Article and Find Full Text PDFWater Res
January 2025
Department of Chemical and Biomolecular Engineering, Vanderbilt University, Nashville, TN 37205, USA; Department of Civil and Environmental Engineering, Vanderbilt University, Nashville, TN 37205, USA. Electronic address:
Nanofiltration (NF) membranes have the potential to significantly advance resource recovery efforts where monovalent/divalent ion separation is critical, but their utilization is limited by inadequate stability under extreme conditions. "Base separation"-i.e.
View Article and Find Full Text PDFFunct Integr Genomics
January 2025
Department of Zoology, University of Gour Banga, Malda, 732103, India.
Rice (Oryza sativa L.), Poaceae family, forms staple diet of half of world's population, and brinjal (Solanum melongena L.), an important solanaceous crop, are consumed worldwide.
View Article and Find Full Text PDFSci Rep
January 2025
College of Civil Engineering, Liaoning Technical University, Fuxin, 123000, China.
The adsorption of phosphate in the collected water is crucial to alleviate the crisis of phosphorus resources, which is in line with the concept of green and sustainable development of resources. In this study, based on the calcium modification technology of pyrolysis combined with chemical modification, a new type of calcium modified coal gangue (CaMCG) was prepared by using coal gangue as raw material and calcium chloride as modifier for the removal of phosphate.The optimum preparation conditions of CaMCG were obtained by response surface test: m:m=1, calcination temperature 735℃, calcination time 135 min.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!