Immunoinformatic construction of an adenovirus-based modular vaccine platform and its application in the design of a SARS-CoV-2 vaccine.

Infect Genet Evol

Laboratory of Virology and Cell Culture, Instituto de Patologia Tropical e Saúde Pública, Universidade Federal de Goiás, Goiânia, GO, Brazil. Electronic address:

Published: November 2020

The current SARS-CoV-2 pandemic has imposed new challenges and demands for health systems, especially in the development of new vaccine strategies. Vaccines for many pathogens were developed based on the display of foreign epitopes in the variable regions of the human adenovirus (HAdV) major capsid proteins (hexon, penton and fiber). The humoral immune response against the HAdV major capsid proteins was demonstrated to play a role in the development of an immune response against the epitopes in display. Through the immunoinformatic profiling of the major capsid proteins of HAdVs from different species, we developed a modular concept that can be used in the development of vaccines based on HAdV vectors. Our data suggests that different immunomodulatory potentials can be observed in the conserved regions, present in the hexon and penton proteins, from different species. Using this modular approach, we developed a HAdV-5 based vaccine strategy for SARS-CoV-2, constructed through the display of SARS-CoV-2 epitopes indicated by our prediction analysis as immunologically relevant. The sequences of the HAdV vector major capsid proteins were also edited to enhance the IFN-gamma induction and antigen presenting cells activation. This is the first study proposing a modular HAdV platform developed to aid the design of new vaccines by inducing an immune response more suited for the epitopes in display.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7833690PMC
http://dx.doi.org/10.1016/j.meegid.2020.104489DOI Listing

Publication Analysis

Top Keywords

major capsid
16
capsid proteins
16
immune response
12
hadv major
8
hexon penton
8
epitopes display
8
hadv
5
proteins
5
immunoinformatic construction
4
construction adenovirus-based
4

Similar Publications

Adeno-associated virus (AAV)-based vectors have emerged as an effective and widely used technology for somatic gene therapy approaches, including those targeting the retina. A major advantage of the AAV technology is the availability of a large number of serotypes that have either been isolated from nature or produced in the laboratory. These serotypes have different properties in terms of sensitivity to neutralizing antibodies, cellular transduction profile and efficiency.

View Article and Find Full Text PDF

As nucleus-forming phages become better characterized, understanding their unifying similarities and unique differences will help us understand how they occupy varied niches and infect diverse hosts. All identified nucleus-forming phages fall within the Chimalliviridae family and share a core genome of 68 unique genes including chimallin, the major nuclear shell protein. A well-studied but non-essential protein encoded by many nucleus-forming phages is PhuZ, a tubulin homolog which aids in capsid migration, nucleus rotation, and nucleus positioning.

View Article and Find Full Text PDF

Human noroviruses are the leading cause of non-bacterial shellfish-associated gastroenteritis. In 2022, a multi-jurisdictional norovirus outbreak associated with contaminated oysters occurred that involved hundreds of illnesses. Here, we conducted genetic analysis on 30 clinical samples associated with this oyster outbreak.

View Article and Find Full Text PDF

Caliciviruses are a diverse group of non-enveloped, positive-sense RNA viruses with a wide range of hosts and transmission routes. Norovirus is the most well-known member of the ; the acute gastroenteritis caused by human norovirus (HuNoV), for example, frequently results in closures of hospital wards and schools during the winter months. One area of calicivirus biology that has gained increasing attention over the past decade is the conformational flexibility exhibited by the protruding (P) domains of the major capsid protein VP1.

View Article and Find Full Text PDF

Certain species D human adenoviruses (HAdV-D19, -D37, and -D64) are causative agents of epidemic keratoconjunctivitis. HAdV-D37 has previously been shown to bind CD46 (membrane cofactor protein) and sialic acid as adhesion receptors. HAdV-D64 is genetically highly similar to HAdV-D37, with an identical fiber protein sequence, but differs substantially in its penton base and hexon proteins, two other major capsid components, due to genetic recombination.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!