Development of a kind of RG108-Fluorescein conjugates for detection of DNA methyltransferase 1 (DNMT1) in living cells.

Anal Biochem

Department of Medicinal Chemistry, School of Pharmacy, Fudan University, No. 826 Zhangheng Road, Shanghai, 201203, China. Electronic address:

Published: October 2020

DNA methyltransferase 1 (DNMT1) is one of the most essential proteins in propagating DNA methylation patterns during replication. Developing methods to assess the expression level of DNMT1 will enable study of gene methylation abnormalities. Thus, a series of fluorescein-conjugated RG108 derivatives were designed and synthesized in the current study. The affinity of the derivatives with DNMT1 was evaluated using surface plasmon resonance. Permeability of the derivatives through the cytomembrane and nuclear envelope was evaluated via confocal imaging. Probe 8a was found to compete with RG108 binding to DNMT1 in the nucleus of HeLa cells, suggesting that probe 8a and RG108 share the same binding site. A HeLa cell model with 4.05-fold overexpression of DNMT1 was constructed and used to evaluate probe 8a. Probe 8a was found to be significantly increased in the nucleus of DNMT1 overexpressing cells. These results indicate that fluorescent probes derived from RG108 have the potential to be used for evaluating the expression level of DNMT1 in living cells.

Download full-text PDF

Source
http://dx.doi.org/10.1016/j.ab.2020.113823DOI Listing

Publication Analysis

Top Keywords

dna methyltransferase
8
dnmt1
8
methyltransferase dnmt1
8
dnmt1 living
8
living cells
8
expression level
8
level dnmt1
8
development kind
4
kind rg108-fluorescein
4
rg108-fluorescein conjugates
4

Similar Publications

PsDMAP1/PsTIP60-regulated H4K16ac is required for ROS-dependent virulence adaptation of on host plants.

Proc Natl Acad Sci U S A

January 2025

Department of Plant Pathology, College of Plant Protection, China Agricultural University, Beijing 100193, China.

Host plants and various fungicides inhibit plant pathogens by inducing the release of excessive reactive oxygen species (ROS) and causing DNA damage, either directly or indirectly leading to cell death. The mechanisms by which the oomycete manages ROS stress resulting from plant immune responses and fungicides remains unclear. This study elucidates the role of histone acetylation in ROS-induced DNA damage responses (DDR) to adapt to stress.

View Article and Find Full Text PDF

DNA methylation is a crucial epigenetic modification that orchestrates chromatin remodelers that suppress transcription, and aberrations in DNA methylation result in a variety of conditions such as cancers and developmental disorders. While it is understood that methylation occurs at CpG-rich DNA regions, it is less understood how distinct methylation profiles are established within various cell types. In this work, we develop a molecular-transport model that depicts the genomic exploration of DNA methyltransferase within a multiscale DNA environment, incorporating biologically relevant factors like methylation rate and CpG density to predict how patterns are established.

View Article and Find Full Text PDF

Zebularine-treated wheat uncovered a phenotype with characteristics of an epigenetically regulated trait, but major chromosomal aberrations, not DNA methylation changes, are the cause, making zebularine unsuitable for epigenetic breeding. Breeding to identify disease-resistant and climate-tolerant high-yielding wheats has led to yield increases over many years, but new hardy, higher yielding varieties are still needed to improve food security in the face of climate change. Traditional breeding to develop new cultivars of wheat is a lengthy process taking more than seven years from the initial cross to cultivar release.

View Article and Find Full Text PDF

Dnmt3a-mediated DNA Methylation Regulates P. gingivalis-suppressed Cementoblast Mineralization Partially Via Mitochondria-dependent Apoptosis Pathway.

Inflammation

January 2025

State Key Laboratory of Oral & Maxillofacial Reconstruction and Regeneration, Key Laboratory of Oral Biomedicine Ministry of Education, Hubei Key Laboratory of Stomatology, School & Hospital of Stomatology, Wuhan University, Wuhan, China.

Background: DNA methyltransferase 3A (Dnmt3a) is an enzyme that catalyzes the de novo methylation of DNA, and plays essential roles in a wide range of physiological and pathological processes. However, it remains unclear whether Porphyromonas gingivalis affects cementoblasts, the cells responsible for cementum formation, through Dnmt3a.

Methods: The samples were collected from models of mouse periapical lesions and mice of different ages, and the expression of Dnmt3a was detected through immunofluorescence.

View Article and Find Full Text PDF

Glioblastoma multiforme (GBM) is the most lethal type of primary brain tumor, necessitating the discovery of reliable serum prognostic biomarkers. This study aimed to investigate the prognostic value of serum Interleukin-6 (IL-6) in GBM patients. Bioinformatics analysis via gene set enrichment analysis was conducted on The Cancer Genome Atlas RNA-seq data to explore the pathways enriched in samples with high expression.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!