Biofilm-mediated oral diseases such as dental caries and periodontal disease remain highly prevalent in populations worldwide. Biofilm formation initiates with the attachment of primary colonizers onto surfaces, and in the context of caries, the adhesion of oral streptococci to dentinal collagen is crucial for biofilm progression. It is known that dentinal collagen suffers from glucose-associated crosslinking as a function of aging or disease; however, the effect of collagen crosslinking on the early adhesion and subsequent biofilm formation of relevant oral streptococci remains unknown. Therefore, the aim of this work was to determine the impact of collagen glycation on the initial adhesion of primary colonizers such as UA159 and SK 36, as well as its effect on the early stages of streptococcal biofilm formation in vitro. Type I collagen matrices were crosslinked with either glucose or methylglyoxal. Atomic force microscopy nanocharacterization revealed morphologic and mechanical changes within the collagen matrix as a function of crosslinking, such as a significantly increased elastic modulus in crosslinked fibrils. Increased nanoadhesion forces were observed for on crosslinked collagen surfaces as compared with the control, and retraction curves obtained for both streptococcal strains demonstrated nanoscale unbinding behavior consistent with bacterial adhesin-substrate coupling. Overall, glucose-crosslinked substrates specifically promoted the initial adhesion, biofilm formation, and insoluble extracellular polysaccharide production of , while methylglyoxal treatment reduced biofilm formation for both strains. Changes in the adhesion behavior and biofilm formation of oral streptococci as a function of collagen glycation could help explain the biofilm dysbiosis seen in older people and patients with diabetes. Further studies are necessary to determine the influence of collagen crosslinking on the balance between acidogenic and nonacidogenic streptococci to aid in the development of novel preventive and therapeutic treatment against dental caries in these patients.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1177/0022034520946320 | DOI Listing |
Sci Rep
January 2025
Department of Biochemistry, Faculty of Science, Masaryk University, Kamenice 5, 625 00, Brno, Czech Republic.
Antibiotic-resistant strains of Staphylococcus aureus pose a significant threat in healthcare, demanding urgent therapeutic solutions. Combining bacteriophages with conventional antibiotics, an innovative approach termed phage-antibiotic synergy, presents a promising treatment avenue. However, to enable new treatment strategies, there is a pressing need for methods to assess their efficacy reliably and rapidly.
View Article and Find Full Text PDFSci Rep
January 2025
Department of Chemical & Biological Engineering, Montana State University, Bozeman, USA.
Common adhesives for nonstructural applications are manufactured using petrochemicals and synthetic solvents. These adhesives are associated with environmental and health concerns because of their release of volatile organic compounds (VOCs). Biopolymer adhesives are an attractive alternative because of lower VOC emissions, but their strength is often insufficient.
View Article and Find Full Text PDFJ Environ Manage
January 2025
Department of Environmental Sciences, Central University of Himachal Pradesh, Dharamshala, 176215, India.
Microplastics (MPs) are produced from various primary and secondary sources and pose multifaceted environmental problems. They are of non-biodegradable nature and may stay in aquatic environments for a long time period. The present review has covered novel aspects pertaining to MPs that were not covered in earlier studies.
View Article and Find Full Text PDFACS Nano
January 2025
Department of Infectious Diseases, the Second Affiliated Hospital, Zhejiang University School of Medicine, Hangzhou 310009, China.
Nonantibiotic strategies are urgently needed to treat acute drug-resistant bacterial pneumonia. Recently, nanomaterial-mediated bacterial cuproptosis has arisen widespread interest due to its superiority against antibiotic resistance. However, it may also cause indiscriminate and irreversible damage to healthy cells.
View Article and Find Full Text PDFJ Mater Chem B
January 2025
Drug Delivery, Disposition, and Dynamics Theme, Monash Institute of Pharmaceutical Sciences, Monash University, 381 Royal Pde, Parkville, VIC, 3052, Australia.
Infections caused by fungal pathogens are a global health problem, and have created an urgent need for new antimicrobial strategies. This report details the synthesis of lipidated 2-vinyl-4,4-dimethyl-5-oxazolone (VDM) oligomers an optimized Cu(0)-mediated reversible-deactivation radical polymerization (RDRP) approach. Cholesterol-Br was used as an initiator to synthesize a library of oligo-VDM (degree of polymerisation = 5, 10, 15, 20, and 25), with an α-terminal cholesterol group.
View Article and Find Full Text PDFEnter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!