A PHP Error was encountered

Severity: Warning

Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests

Filename: helpers/my_audit_helper.php

Line Number: 176

Backtrace:

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML

File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016

File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global

File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword

File: /var/www/html/index.php
Line: 316
Function: require_once

Responses to Alteration of Atmospheric Oxygen and Social Environment Suggest Trade-Offs among Growth Rate, Life Span, and Stress Susceptibility in Giant Mealworms (). | LitMetric

Growth rate, development time, and response to environmental stressors vary tremendously across organisms, suggesting trade-offs that are affected by evolutionary or ecological factors, but such trade-offs are poorly understood. Prior studies using artificially selected lines of suggest that insects with high growth rates, long development time, and large body size are more sensitive to hypoxic or hyperoxic stresses, such as reactive oxygen species (ROS) production, but the mechanisms and specific life-history associations remain unclear. Here, we manipulated the social environment to differentiate the effects of size, growth rate, and development time on oxygen sensitivity of the giant mealworm, . Crowding reduced growth rates but yielded larger adults as a result of supernumerary molts and longer development times. The juvenile performance (growth rate, development time, adult mass) of crowd-reared mealworms was less sensitive to variation in atmospheric oxygen than it was for individually reared animals, consistent with the hypothesis that high growth rates are associated with increased sensitivity to ROS. Life span in normoxia was extended by crowd rearing, perhaps due to the larger size and/or increased resources of the larger adults. Life spans of crowd-reared animals were more negatively affected by hypoxia or hyperoxia than life spans of individually reared animals, possibly due to the longer total stress exposure of crowd-reared animals. These data suggest that animals with high growth rates experience a negative trade-off of performance with greater sensitivity to stress during the juvenile phase, while animals with long development times or life spans experience a negative trade-off of greater susceptibility of life span to environmental stress.

Download full-text PDF

Source
http://dx.doi.org/10.1086/710726DOI Listing

Publication Analysis

Top Keywords

growth rate
16
development time
16
growth rates
16
life span
12
rate development
12
high growth
12
life spans
12
atmospheric oxygen
8
social environment
8
growth
8

Similar Publications

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!