Severity: Warning
Message: file_get_contents(https://...@pubfacts.com&api_key=b8daa3ad693db53b1410957c26c9a51b4908&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
This study aims to develop a one-dimensional (1D) computational fluid dynamics (CFD) model with dynamic airway geometry that considers airway wall compliance and acinar dynamics. The proposed 1D model evaluates the pressure distribution and the hysteresis between the pressure and tidal volume () in the central and terminal airways for healthy and asthmatic subjects. Four-dimensional CT images were captured at 11-14 time points during the breathing cycle. The airway diameter and length were reconstructed using a volume-filling method and a stochastic model at respective time points. The obtained values for the airway diameter and length were interpolated via the Akima spline to avoid unboundedness. A 1D energy balance equation considering the effects of wall compliance and parenchymal inertance was solved using the efficient aggregation-based algebraic multigrid solver, a sparse matrix solver, reducing the computational costs by around 90% when compared with the generalized minimal residual solver. In the versus displacement in the basal direction (-coordinate), the inspiration curve was lower than the expiration curve, leading to relative hysteresis. The dynamic deformation model was the major factor influencing the difference in the workload in the central and terminal airways. In contrast, wall compliance and parenchymal inertance appeared only marginally to affect the pressure and workload. The integrated 1D model mimicked dynamic deformation by predicting airway diameter and length at each time point, describing the effects of wall compliance and parenchymal inertance. This computationally efficient model could be utilized to assess breathing mechanism as an alternative to pulmonary function tests. This study introduces a one-dimensional (1D) computational fluid dynamics (CFD) model mimicking the realistic changes in diameter and length in whole airways and reveals differences in lung deformation between healthy and asthmatic subjects. Utilizing computational models, the effects of parenchymal inertance and airway wall compliance are investigated by changing ventilation frequency and airway wall elastance, respectively.
Download full-text PDF |
Source |
---|---|
http://dx.doi.org/10.1152/japplphysiol.00176.2020 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!