AI Article Synopsis

Article Abstract

Background Women have decreased hemodialysis arteriovenous fistula (AVF) maturation and patency rates. We determined the mechanisms responsible for the sex-specific differences in AVF maturation and stenosis formation by performing whole transcriptome RNA sequencing with differential gene expression and pathway analysis, histopathological changes, and in vitro cell culture experiments from male and female smooth muscle cells. Methods and Results Mice with chronic kidney disease and AVF were used. Outflow veins were evaluated for gene expression, histomorphometric analysis, Doppler ultrasound, immunohistologic analysis, and fibrosis. Primary vascular smooth muscle cells were collected from female and male aorta vessels. In female AVFs, RNA sequencing with real-time polymerase chain reaction analysis demonstrated a significant decrease in the average gene expression of (bone morphogenetic protein 7) and downstream , with increased transforming growth factor-β1 ( and transforming growth factor-β receptor 1 (. There was decreased peak velocity, negative vascular remodeling with higher venous fibrosis and an increase in synthetic vascular smooth muscle cell phenotype, decrease in proliferation, and increase in apoptosis in female outflow veins at day 28. In vitro primary vascular smooth muscle cell experiments performed under hypoxic conditions demonstrated, in female compared with male cells, that there was increased gene expression of , , with increased migration. Conclusions In female AVFs, there is decreased gene expression of and with increased and , and the cellular and vascular differences result in venous fibrosis with negative vascular remodeling.

Download full-text PDF

Source
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7660821PMC
http://dx.doi.org/10.1161/JAHA.120.017420DOI Listing

Publication Analysis

Top Keywords

gene expression
20
smooth muscle
16
transforming growth
12
venous fibrosis
12
vascular smooth
12
avf maturation
8
rna sequencing
8
muscle cells
8
outflow veins
8
primary vascular
8

Similar Publications

Blood-contacting medical devices can easily trigger immune responses, leading to thrombosis and hyperblastosis. Constructing microtexture that provides efficient antithrombotic and rapid reendothelialization performance on complex curved surfaces remains a pressing challenge. In this work, we present a robust and regular micronano binary texture on the titanium surface, characterized by exceptional mechanical strength and precisely controlled wettability to achieve excellent hemocompatibility.

View Article and Find Full Text PDF

Anchoring of Probiotic-Membrane Vesicles in Hydrogels Facilitates Wound Vascularization.

ACS Nano

January 2025

National Engineering Research Center for Biomaterials, Sichuan University, 29 Wangjiang Road, Chengdu, Sichuan 610064, P. R. China.

Inadequate vascularization significantly hampers wound recovery by limiting nutrient delivery. To address this challenge, we extracted membrane vesicles from (LMVs) and identified their angiogenic potential via transcriptomic analysis. We further developed a composite hydrogel system (Gel-LMVs) by anchoring LMVs within carboxylated chitosan and cross-linking it with oxidized hyaluronic acid through a Schiff base reaction.

View Article and Find Full Text PDF

In this study, we aimed to uncover novel biomarkers in acute myeloid leukemia (AML) that could serve as prognostic indicators or therapeutic targets. We analyzed AML microarray datasets from the Gene Expression Omnibus (GEO) repository, identifying key differentially expressed genes (DEGs) through the robust rank aggregation (RRA) approach. The functions of these DEGs were elucidated through Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses.

View Article and Find Full Text PDF

Unfolded protein response during the progression of colorectal carcinogenesis.

Acta Cir Bras

January 2025

Universidade Federal de Mato Grosso do Sul - Postgraduate Program in Health and Development in the Midwest Region - Campo Grande (MS) - Brazil.

Purpose: To evaluate the molecular evolution of endoplasmic reticulum (ER) stress during colorectal cancer carcinogenesis.

Methods: Fifty-six hairless mice were divided into two groups: control (no intervention); and carcinogenesis (treated with two doses of azoxymethane at 10 mg/kg during the third and the fourth week and dextran sodium sulfate at 2.5% for seven days in the second, fifth, and eighth week).

View Article and Find Full Text PDF

CD4FOXP3Exon2 regulatory T cell frequency predicts breast cancer prognosis and survival.

Sci Adv

January 2025

Istituto per l'Endocrinologia e l'Oncologia Sperimentale "G. Salvatore", IEOS-CNR, Napoli, Italy.

CD4FOXP3 regulatory T cells (T) suppress immune responses to tumors, and their accumulation in the tumor microenvironment (TME) correlates with poor clinical outcome in several cancers, including breast cancer (BC). However, the properties of intratumoral T remain largely unknown. Here, we found that a functionally distinct subpopulation of T, expressing the FOXP3 Exon2 splicing variants, is prominent in patients with hormone receptor-positive BC with poor prognosis.

View Article and Find Full Text PDF

Want AI Summaries of new PubMed Abstracts delivered to your In-box?

Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!