Severity: Warning
Message: file_get_contents(https://...@gmail.com&api_key=61f08fa0b96a73de8c900d749fcb997acc09&a=1): Failed to open stream: HTTP request failed! HTTP/1.1 429 Too Many Requests
Filename: helpers/my_audit_helper.php
Line Number: 176
Backtrace:
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 176
Function: file_get_contents
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 250
Function: simplexml_load_file_from_url
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 1034
Function: getPubMedXML
File: /var/www/html/application/helpers/my_audit_helper.php
Line: 3152
Function: GetPubMedArticleOutput_2016
File: /var/www/html/application/controllers/Detail.php
Line: 575
Function: pubMedSearch_Global
File: /var/www/html/application/controllers/Detail.php
Line: 489
Function: pubMedGetRelatedKeyword
File: /var/www/html/index.php
Line: 316
Function: require_once
Heart failure (HF) represents a major public health burden. Inflammation has been shown to be a critical factor in the progression of HF, regardless of the aetiology. Disappointingly, the majority of clinical trials targeting aspects of inflammation in patients with HF have been largely negative. Many clinical researches demonstrate that danshen has a good efficacy on HF, and however, whether danshen exerts anti-inflammatory effects against HF remains unclear. In our study, the employment of a water extracted and alcohol precipitated of danshen extract attenuated cardiac dysfunction and inflammation response in acute myocardial infarction-induced HF rats. Transcriptome technique and validation results revealed that TLR4 signalling pathway was involved in the anti-inflammation effects of danshen. In vitro, danshen reduced the release of inflammatory mediators in LPS-stimulated RAW264.7 macrophage cells. Besides, the LPS-stimulated macrophage conditioned media was applied to induce cardiac H9C2 cells injury, which could be attenuated by danshen. Furtherly, knock-down and overexpression of TLR4 were utilized to confirm that danshen ameliorated inflammatory injury via MyD88-dependent TLR4-TRAF6-NF-κB signalling pathway in cardiomyocytes. Furthermore, by utilizing co-immunoprecipitation, danshen was proved to suppress MD2/TLR4 complex formation and MyD88 recruitment. In conclusion, our results demonstrated that danshen ameliorates inflammatory injury by controlling MD2/TLR4-MyD88 complex formation and TLR4-TRAF6-NF-κB signalling pathway in acute myocardial infarction-induced HF.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7521313 | PMC |
http://dx.doi.org/10.1111/jcmm.15688 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!