Auxins play a pivotal role in clubroot development caused by the obligate biotroph In this study, we investigated the pattern of expression of 23 genes related to auxin biosynthesis, reception, and transport in Chinese cabbage () after inoculation with . The predicted proteins identified, based on the 23 selected auxin-related genes, were from protein kinase, receptor kinase, auxin responsive, auxin efflux carrier, transcriptional regulator, and the auxin-repressed protein family. These proteins differed in amino acids residue, molecular weights, isoelectric points, chromosomal location, and subcellular localization. Leaf and root tissues showed dynamic and organ-specific variation in expression of auxin-related genes. The gene, involved in auxin signaling, exhibited 84.4-fold increase in expression in root tissues compared to leaf tissues as an average of all samples. This gene accounted for 4.8-, 2.6-, and 5.1-fold higher expression at 3, 14, and 28 days post inoculation (dpi) in the inoculated root tissues compared to mock-treated roots. an auxin signaling gene, and an auxin transporter, were remarkably induced during both cortex infection at 14 dpi and gall formation at 28 dpi. an auxin receptor, was upregulated during cortex infection at 14 dpi. The gene, associated with root hair development, was induced at 1 dpi in infected roots, indicating its importance in primary infection. More interestingly, a significantly higher expression of , an auxin-repressed gene, at both the primary and secondary phases of infection indicated a dynamic response of the host plant towards its resistance against . The results of this study improve our current understanding of the role of auxin-related genes in clubroot disease development.
Download full-text PDF |
Source |
---|---|
http://www.ncbi.nlm.nih.gov/pmc/articles/PMC7432499 | PMC |
http://dx.doi.org/10.3390/ijms21155554 | DOI Listing |
Enter search terms and have AI summaries delivered each week - change queries or unsubscribe any time!